<li><p><span class="math">\(p\)</span> cartes <span class="math">\(B_i\)</span> (<span class="math">\(0\leqslant i\leqslant p-1\)</span>) telles que <div class="math">\[B_i=\{a,c_{i,0},\dots,c_{i,p-1}\},\]</div></p></li>
<li><p><span class="math">\(p^2\)</span> cartes <span class="math">\(C_{i,j}\)</span> (<span class="math">\(0\leqslant i,j\leqslant p-1\)</span>) telles que: <div class="math">\[C_{i,j}=\{b_i,c_{o,j},c_{1,i+j},c_{2,i+2j},\dots,c_{p-1,(p-1)i+j}\},\]</div> l’indexation est à considérer dans <span class="math">\(\mathbb{Z}_p\)</span>.</p></li>
</ul>
<li><p><span class="math">\(p\)</span> cartes <span class="math">\(B_i\)</span> (<span class="math">\(0\leqslant i\leqslant p-1\)</span>) telles que <div class="math">\[B_i=\{a,c_{i,0},\dots,c_{i,p-1}\},\]</div></p></li>
<li><p><span class="math">\(p^2\)</span> cartes <span class="math">\(C_{i,j}\)</span> (<span class="math">\(0\leqslant i,j\leqslant p-1\)</span>) telles que: <div class="math">\[C_{i,j}=\{b_i,c_{o,j},c_{1,i+j},c_{2,i+2j},\dots,c_{p-1,(p-1)i+j}\},\]</div> l’indexation est à considérer dans <span class="math">\(\mathbb{Z}_p\)</span>.</p></li>
</ul>