Chapitre 5 : Compléments de théorie des ensembles et algèbre générale

I Théorie des ensembles

A) Relation binaire, application

Soient E, F deux ensembles, G une partie de $E \times F$.
Soit R définie par :
$\forall (x, y) \in E \times F, xRy \iff (x, y) \in G$
On dit que R est une relation binaire de source E, de but F et de graphe G.
Une relation binaire R est une application si $\forall x \in E, \exists y \in F, xRy$.
On note alors $y = R(x)$.

B) Partitions, relation d’équivalence, quotient

- On appelle partition d’un ensemble E toute partie Π de $P(E)$ telle que :
 - Les éléments de Π sont non vides ($\Pi \subset P(E) \setminus \{\emptyset\}$)
 - Les éléments de Π sont deux à deux disjoints ($\forall A, B \in \Pi, A \not= B \Rightarrow A \cap B = \emptyset$)
 - Les éléments de Π recouvrent E ($\bigcup_{\Pi} A = E$)

Remarque : \emptyset admet une unique partition, à savoir $\Pi = \emptyset$ (et pas $\Pi = \{\emptyset\}$!)

- Surjection canonique et partition par fibres :
 Proposition :
 (1) Soit Π une partition de E. La relation binaire R définie sur $E \times \Pi$ par
 $\forall (x, A) \in E \times \Pi, xRA \iff x \in A$ est une application surjective $E \to \Pi$.
 (2) Inversement, si $\varphi : E \to F$ est surjective, alors $\Pi = \{\varphi^{-1}\{y\}, y \in F\}$ est une
 partition de E. (les $\varphi^{-1}\{y\}$ sont appelées les fibres de φ)

Définition :
Dans le point (1), l’application $E \to \Pi$
$x \mapsto A$ unique élément de Π tel que $x \in A$
la surjection canonique de E sur Π.

- Relation d’équivalence… (symétrique, réflexive, transitive)

- Classe d’équivalence d’une relation d’équivalence :
 Soit R une relation d’équivalence sur E. On appelle classe d’équivalence de $x \in E$
la partie $\text{Cl}_R(x) = \{y \in E, xRy\}$.

Théorème :
L’ensemble des classes d’équivalences de R est une partition de E, notée E / R, et
l’application $E \to E / R$ est la surjection canonique associée.
$x \mapsto \text{Cl}_R(x)$
• Cas des ensembles finis :

Théorème :
Soit E un ensemble fini.

1. Soit $f : E \to F$ une application. Alors les fibres de f sont finies, et
\[
\# E = \sum_{y \in F} \# f^{-1}\{y\}.
\]

2. Si Π est une partition de E, alors $\# E = \sum_{A \in \Pi} \# A$.

Cas particulier :
Si tous les cardinaux des éléments de Π sont égaux à m, alors $\# E = m \times \# \Pi$.

Démonstrations :
- Premier théorème :
L’ensemble des classes d’équivalences forment une partition :

(i) $\forall x \in E, Cl_g(x) \neq \emptyset$ (en effet, $x \in Cl_g(x)$ car xRx)

(ii) Soient $x, y \in E$. Alors soit $Cl_g(y) = Cl_g(x)$, soit $Cl_g(y) \cap Cl_g(x) = \emptyset$.
En effet, supposons que $Cl_g(y) \cap Cl_g(x) \neq \emptyset$.
Soit alors $z \in Cl_g(y) \cap Cl_g(x)$.
Pour $t \in Cl_g(x)$, on a tRx, et xRz et zRy, donc par transitivité tRy.
Donc $Cl_g(x) \subseteq Cl_g(y)$. De même, $Cl_g(y) \subseteq Cl_g(x)$, d’où l’égalité

(iii) Les classes recouvrent E: $\forall x \in E, x \in Cl_g(x)$
- Deuxième théorème :
(1) Par récurrence sur le nombre de fibres non vides.
(2) Soit f la surjection canonique ; alors $f^{-1}\{A\} = A$, puis on applique (1).

Théorie des groupes

A) Catégorie des groupes

1) Généralités

Définitions :
Groupes, morphismes de groupes, iso/automorphismes, sous-groupes…

Exemple :
Automorphisme intérieur (conjugaison)
Soit $(G, *)$ un groupe, et $a \in G$.
Alors $\sigma_a : G \to G$ est un automorphisme,
\[g \mapsto a * g * a^{-1} \]
De plus, l’application $(G, *) \to (\text{Aut} G, \circ)$ est un morphisme de groupes :
\[a \mapsto \sigma_a \]
Soit $a, b \in G$. Pour tout $g \in G$, on a :
\[(\sigma_a \circ \sigma_b)(g) = \sigma_a(b * g * b^{-1}) = a * b * g * b^{-1} * a^{-1} = \sigma_{a * b}(g) .\]
Donc $\sigma_a \circ \sigma_b = \sigma_{a * b}$.
Propriétés :
- Image directe ou réciproque d’un sous-groupe par un morphisme
- Noyau ou image d’un morphisme
- Un morphisme de groupe est injectif si, et seulement si, \(\ker \varphi = \{1_G\} \).

2) Groupes produits

Théorème :
Soient \((G_k,T_k) \ (k=1,2)\) deux groupes de neutres \(e_k\).
Alors la loi * définie sur \(G_1 \times G_2\) par :
\[
\forall (x_1,x_2,y_1,y_2) \in (G_1 \times G_2)^2, (x_1,x_2)*(y_1,y_2) = (x_1T_1y_1,x_2T_2y_2)
\]
est une loi de groupe, de neutre \((e_1,e_2)\) pour laquelle le symétrique de \((x,y)\) est \((x^{-1},y^{-1})\).

Définition :
C’est la structure produit sur \(G_1 \times G_2\). On peut la généraliser à un produit infini.

3) Sous-groupes distingués (hors programme)

Définition :
Soit \((G,T)\) un groupe. Une partie \(H\) de \(G\) est appelée sous-groupe distingué si c’est un sous-groupe stable par toutes les conjugaisons de \(G\), c’est-à-dire :
1. \(H\) est un sous-groupe de \((G,T)\)
2. \(\forall a \in G, \forall h \in H, aThTa^{-1} \in H\)

Théorème :
Le noyau d’un morphisme de groupe est un sous-groupe distingué de la source.

Démonstration :
Soit \(\varphi : (G_1,T_1) \to (G_2,T_2)\) un morphisme.
Posons \(H = \ker \varphi\).
Déjà, \(H\) est un sous-groupe de \((G_1,T_1)\).
Soient \(a \in G_1, \ h \in H\).
On a : \(\varphi(aT_1hT_1a^{-1}) = \varphi(a)T_2\varphi(h)T_2\varphi(a)^{-1} = \varphi(a)T_2T(a)^{-1} = 1_G\).
Donc \(aT_1hT_1a^{-1} \in H\), et \(H\) est donc bien un sous-groupe distingué de \(G_1\).

Plus généralement, l’image réciproque d’un sous-groupe distingué par un morphisme est un sous-groupe distingué. (Quasiment la même démonstration)
Attention : c’est faux pour les images directes.

Exemple :
Si \(\bar{G}\) est un groupe commutatif, tout sous-groupe de \(G\) est distingué
Si \((G,T)\) est un groupe quelconque, alors \(\{1_G\}\) et \(G\) sont distingués.
Définition :
Un groupe dont les seuls sous-groupes distingués sont \(\{1_G\} \) et \(G \) s’appelle un groupe simple.

B) Exemples de groupes

\((\mathbb{Z},+) \) est un groupe.

Théorème :
- Une partie \(H \) de \(\mathbb{Z} \) est un sous-groupe de \(\mathbb{Z} \) si, et seulement si, il existe \(c \in \mathbb{N} \) tel que \(H = c.\mathbb{Z} \).
- Soit \(H \) un sous-groupe de \((\mathbb{Z}',+) \). Alors il existe \(r \leq n \) tel que \(H \) est isomorphe à \(\mathbb{Z}' \).

Démonstration (du deuxième point) :
Par récurrence sur \(n \) :
- Pour \(n = 1 \) : les sous-groupes de \(\mathbb{Z} \) sont les \(c.\mathbb{Z}, c \in \mathbb{N} \).
- Si \(c = 0 \), \(c.\mathbb{Z} \) est isomorphe à \(\mathbb{Z}' \), sinon \(c.\mathbb{Z} \) est isomorphe à \(\mathbb{Z} \), un isomorphisme étant \(\mathbb{Z} \to c.\mathbb{Z} \).
- Soit \(n \in \mathbb{N} \), supposons que pour tout \(k \leq n \), si \(H \) est un sous-groupe de \((\mathbb{Z}^k,+), \) alors il existe \(r \leq k \) tel que \(H \) est isomorphe à \(\mathbb{Z}' \).

Soit alors \(H \) un sous-groupe de \(\mathbb{Z}^{n+1} \).

On considère \(\varphi : \mathbb{Z}^{n+1} \to \mathbb{Z}^n \) morphisme surjectif de groupe. Alors \(\varphi(H) \)

\((x_1,x_2,\ldots,x_{n+1}) \to x_{n+1} \)

est un sous-groupe de \((\mathbb{Z},+) \); il existe donc \(c \in \mathbb{N} \) tel que \(\varphi(H) = c.\mathbb{Z} \).

1. Si \(c = 0 \), \(H \subset \ker \varphi = \mathbb{Z}^n \times \{0\} \).

Par hypothèse de récurrence, \(H \) est donc isomorphe à un certain \(\mathbb{Z}' \) où \(r \leq n \).

En effet :

Soit \(\Pi : \mathbb{Z}^{n+1} \to \mathbb{Z}^n \) Alors \(\Pi (x_1,x_2,\ldots,x_{n+1}) \) est un isomorphisme.

Donc \(H \sim \Pi(H) \) (\(\sim : \) isomorphe à). Or, \(\Pi(H) \) est un sous-groupe de \(\mathbb{Z}' \), donc est isomorphe à \(\mathbb{Z}' \) pour un certain \(r \leq n \). Donc \(H \) est isomorphe à \(\mathbb{Z}' \).

2. Si \(c > 0 \) :

Soit \(v \in H \) tel que \(\varphi(v) = c \). Alors, pour \(h \in H \), \(\frac{\varphi(h)}{c} = \alpha \in \mathbb{Z} \).

Ainsi, \(\varphi(h - \alpha.v) = \varphi(h) - \varphi(\alpha.v) = \alpha \varphi(h) - \varphi(\alpha.v) = 0 \).

Donc \(h - \alpha.v \in \ker \varphi \cap H \). Posons \(H' = \ker \varphi \cap H \).

Alors \(H' \sim \mathbb{Z}' \) pour un certain \(r \leq n \) (d’après (1))

Considérons maintenant l’application \(u : H \times \mathbb{Z} \to H \). Alors \(u \) est un morphisme. \(u \) est surjectif : soit \(h \in H \). Il existe alors \(\alpha \in \mathbb{Z} \) tel que \(h - \alpha.v \in H' \). Ainsi, si on pose \(h' = h - \alpha.v \), \(h = u(h',\alpha) \). \(u \) est injectif : si \(u(h',n) = 0 \), alors \(h'+nv = 0 \), donc \(\varphi(h'+nv) = \varphi(h')+nc = 0 \), d’où \(n = 0 \), puis \(h' = 0 \). Donc \(u \) est un isomorphisme, et

\(H \) est isomorphe à \(\mathbb{Z}'^{r+1} (r+1 \leq n+1) \), ce qui achève la récurrence.
Groupe des éléments inversibles d’un anneau unitaire :
Soit \((A,+,\ast)\) un anneau, d’élément unité \(1_A\).
On note \(A^\ast = \{a \in A, \exists b \in A, a \ast b = b \ast a = 1_A\}\)
Proposition :
\((A^\ast,\ast)\) est un groupe.

On note \(M_n(\mathbb{Z}) = \{M = (m_{i,j})_{i,j=1}^n \in M_n(\mathbb{R}), \forall (i,j) \in [1,n]^2, m_{i,j} \in \mathbb{Z}\}\)
Alors \(M_n(\mathbb{Z})\) est un sous anneau de \((M_n(\mathbb{R}),+,\times)\)
On peut alors noter \(M_n(\mathbb{Z})^\ast = \{M \in M_n(\mathbb{Z}), \exists M' \in M_n(\mathbb{Z}), MM' = M'M = I_n\}\)
Soit \(M \in M_n(\mathbb{Z})\). On a alors l’équivalence : \(M \in M_n(\mathbb{Z})^\ast \iff \det M = \pm 1\)
En effet :
• Si \(M \in M_n(\mathbb{Z})^\ast\), Alors \((\det M)(\det M^{-1}) = \det I_n = 1\).
Le déterminant d’une matrice à coefficients dans \(\mathbb{Z}\) est dans \(\mathbb{Z}\). Donc \(\det M\) est
inversible dans \(\mathbb{Z}\). Donc \(\det M = \pm 1\).
• Si maintenant \(\det M = \varepsilon\) avec \(\varepsilon = \pm 1\):
On a \(M^{-1} = \frac{\\text{com}(M)}{\varepsilon}\).
Les coefficients de \(\text{com}(M)\) sont entiers, donc \(\frac{\\text{com}(M)}{\varepsilon} \in M_n(\mathbb{Z})\).
Donc \(M \in M_n(\mathbb{Z})^\ast\)

Groupes symétriques et alternés :
Définition :
- \(\mathcal{S}_n\) est l’ensemble des permutations de \(\{1,...,n\}\). Ainsi, \(#\mathcal{S}_n = n!\).
- Signature de \(\sigma \in \mathcal{S}_n : \varepsilon(\sigma) = \prod_{1 \leq i < j \leq n} \frac{\sigma(j) - \sigma(i)}{j - i}\)
Théorème :
• \(\forall \sigma \in \mathcal{S}_n, \varepsilon(\sigma) \in \{\pm 1\}\)
• Si \(\sigma\) est une transposition, alors \(\varepsilon(\sigma) = -1\)
• \(\varepsilon\) est un morphisme de groupe : \(\varepsilon : (\mathcal{S}_n,\circ) \rightarrow (\{\pm 1\},\times)\)

Définition :
\(A_n = \ker \varepsilon : \) groupe alterné.
\(A_n\) est donc un sous-groupe distingué de \((\mathcal{S}_n,\circ)\), et \(#A_n = \frac{n!}{2}\) pour \(n \geq 2\).
En effet :
Posons \(B_n = \{\sigma \in \mathcal{S}_n, \varepsilon(\sigma) = -1\}\)
On a ainsi \(\mathcal{S}_n = A_n \cup B_n\) et \(A_n \cap B_n = \emptyset\)
Posons \(\tau = (1;2)\).
Alors \(A_n \rightarrow B_n\) est bijective (car involutive).
Donc \(#A_n = #B_n\), d’où \(#A_n = \frac{n!}{2}\).
C) Puissance dans un groupe et applications

1) Cas des entiers naturels

Soit \((G,\ast)\) un groupe (il suffirait en fait que \(*\) soit associative et admette un neutre)

Soit \(g \in G\). On pose \[g^0 = e_G \]
\[\forall n \in \mathbb{N}, \ g^{n+1} = g^n * g\]

Proposition :

Pour tous \(n, m \in \mathbb{N}\), on a \(g^{n+m} = g^n * g^m\).

Cas particulier où \(* = +\) :

On note plutôt \(e_G = 0\), et pour \(g \in G\) :
[\[
\begin{align*}
0.g &= e_G = 0 \\
\forall n \in \mathbb{N}, (n+1).g &= n.g + g
\end{align*}
\]

2) Extension à \(\mathbb{Z}\).

- Notation multiplicative :

 On suppose ici que \((G,\ast)\). Pour \(n \in \mathbb{Z} \setminus \mathbb{N}\), on pose \(g^n = (g^{-1})^{-n}\).

- Notation additive…

Théorème :

Soit \((G,\ast)\) un groupe, et \(g \in G\).

Alors \(\sigma_g : (\mathbb{Z},+) \to (G,\ast)\) est un morphisme de groupes.

\(n \mapsto g^n\)

3) Sous-groupe engendré par une partie

Théorème :

Soit \((G,\ast)\) un groupe, et \(A\) une partie de \(G\).

- L’intersection des sous-groupes de \(G\) contenant \(A\) est un sous-groupe de \(G\), noté \(\text{gr}(A)\).
- \(\text{gr}(A)\) est le plus petit sous-groupe de \(G\) contenant \(A\).
- \(\text{gr}(A) = \left\{ a_1^{e_1} * a_2^{e_2} * ... * a_p^{e_p}, e_i = \pm 1, (a_1, ..., a_p) \in A^p \right\}(H_1)\)
 \[= \left\{ a_1^{N_1} * a_2^{N_2} * ... * a_p^{N_p}, N_j \in \mathbb{Z}, (a_1, ..., a_p) \in A^p \right\}(H_2)\]

Démonstration :

Pour les deux premiers points : ok

Montrons que \(\text{gr}(A) = H_1 = H_2\).

Déjà, \(H_1 \subset H_2\), et \(H_2 \subset \text{gr}(A)\).

Montrons maintenant que \(\text{gr}(A) \subset H_1\). On va montrer que \(H_1\) est un sous-groupe de \(G\) contenant \(A\).

Déjà, \(A \subset H_1\). De plus, \(H_1\) est un sous-groupe de \(G\) : il est stable par produit et inverse, et contient \(e_G\).
Définitions :
- Si \(\text{gr}(A) = G \), on dit que \(A \) est génératrice de \(G \).
- Si \(A = \{a\} \), \(\text{gr}(A) \) s'appelle le groupe monogène engendré par \(a \).
- Un groupe monogène fini s'appelle un groupe cyclique.

Proposition :
Soit \((G,*)\) un groupe, et \(g \in G \).
Le groupe \(\text{gr}(g) \) est l’image du morphisme \(\sigma_g : \mathbb{Z} \rightarrow G \) :
\[
m \mapsto g^n
\]

4) Exemples

- \((\mathbb{Z},+)\) est monogène, car \(\mathbb{Z} = \text{gr}([1]) \) (notation additive)
- Soit \((a,b) \in \mathbb{N}^2 \). Alors \(\text{gr}([a,b]) = (a \wedge b)\mathbb{Z} \)
 En effet :
 \[
 \text{gr}([a,b]) = \{n.a + n.b; (n,m) \in \mathbb{Z}^2\} = a.\mathbb{Z} + b.\mathbb{Z} = (a \wedge b)\mathbb{Z} \quad \text{(th de Bézout)}
\]
- \((\mathbb{Z}_n,\circ)\) est engendré par les transpositions.
- Rappel :

Matrice de dilatation :
\[
D_\lambda(A) = \begin{pmatrix}
1 & & & \\
& \ddots & & \\
& & \ddots & \\
& & & \lambda
\end{pmatrix} = D_\lambda(A) \quad (C_k \rightarrow \lambda C_k)
\]

Pour \(A \in M_n(\mathbb{R}) \),
\[
D_\lambda(A) \times A = \begin{pmatrix}
1 & & & \\
& \ddots & & \\
& & \ddots & \\
& & & \lambda
\end{pmatrix} \begin{pmatrix}
a_{1,1} & \cdots & \cdots & a_{1,n} \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
a_{n,1} & \cdots & \cdots & a_{n,n}
\end{pmatrix} = \begin{pmatrix}
a_{1,1} & \cdots & \cdots & a_{1,n} \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
\lambda a_{k,1} & \cdots & \cdots & \lambda a_{k,n}
\end{pmatrix}
\]

Matrice de transvection :
\[
T_{i,j}(\lambda) = \begin{pmatrix}
1 & & \lambda \\
& \ddots & \\
& & \ddots \\
& & & 1
\end{pmatrix} = I_n + \lambda E_{i,j}
\]
\[
T_{i,j}(\lambda) \times A : \text{matrice obtenue en ajoutant à la } i\text{-ième ligne de } A \text{ } \lambda \text{ fois la } j\text{-ième ligne de } A.
\]

Théorème :
Soit \(\mathbb{K} \) un corps.
(1) Toute matrice de déterminant 1 est produit de matrices \(T_{i,j}(\lambda) \).
 Autrement dit, \(SL_n(\mathbb{K}) \) est le sous-groupe de \(M_n(\mathbb{K}) \) engendré par les \(T_{i,j}(\lambda) \).
(2) Toute matrice de déterminant non nul s’écrit \(A \times D_n(\lambda) \) où \(A' \) est une matrice de \(SL_n(\mathbb{R}) \). En d’autres termes, \(GL_n(\mathbb{R}) \) est engendré par les \(T_{i,j}(\lambda) \) et les \(D_n(\mu) \).

Démonstration :
Voir méthode du pivot.

Pour \(A \in GL_n(\mathbb{R}) \), il existe une suite d’opérations élémentaires du type « on ajoute à une ligne de \(A \) une combinaison linéaire des autres » qui transforme \(A \) en
\[
\begin{pmatrix}
1 & \cdots & 1
\end{pmatrix}
\]
\[
\begin{pmatrix}
d
\end{pmatrix}
\]
 où \(d = \det A \).

Comme ajouter à la ligne \(i \lambda \) fois la ligne \(j \) revient à remplacer \(A \) par
\(T_{i,j}(\lambda) \times A \), il existe donc une famille \((T_{i,j}(\lambda))_{\lambda \in [\mathbb{R}]} \) telle que :
\[
T_{i,j}(\lambda_m) \times \ldots \times T_{i,j}(\lambda_1) \times A = \begin{pmatrix} 1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
d & & d \end{pmatrix} = D_n(d)
\]

Si \(A \in SL_n(\mathbb{R}) \), on a \(\det A = 1 \), et donc :
\[
A = [T_{i,j}(\lambda_m) \times \ldots \times T_{i,j}(\lambda_1)]^{-1} = T_{i,j}(\lambda_m) \times \ldots \times T_{i,j}(\lambda_1)
\]
Donc \(A \) appartient au groupe engendré par les transvections.

De plus, \(\forall i, j, \lambda, \det(T_{i,j}(\lambda)) = 1 \).

Donc ce groupe est un sous-groupe de \(SL_n(\mathbb{R}) \)

Application :
Montrer que \(SL_n(\mathbb{R}) \) est connexe par arcs.

Soit \(A \in SL_n(\mathbb{R}) \).
On va trouver \(\phi : [0;1] \to SL_n(\mathbb{R}) \) continue telle que \(\phi(0) = I_n \) et \(\phi(1) = A \).

Comme \(A \in SL_n(\mathbb{R}) \), \(A \) s’écrit sous la forme \(T_{i,j}(\lambda) \times \ldots \times T_{i,j}(\lambda_m) \).

On pose alors \(\phi(t) = T_{i,j}(t\lambda) \times \ldots \times T_{i,j}(t\lambda_m) \).

On a, pour tout \(t \in [0;1] \), \(\det(\phi(t)) = 1 \), \(\phi(0) = I_n \) et \(\phi(1) = A \).

De plus, \(\phi \) est continue car \(\phi(t) \) est une matrice dont les coefficients dépendent polynomiallement de \(t \).

(ou : l’application \(M_n(\mathbb{R})^2 \to M_n(\mathbb{R}) \) est continue car bilinéaire en \((A,B) \mapsto AB \)

dimension finie)

Donc \(SL_n(\mathbb{R}) \) est connexe par arcs.

Remarque :
\(GL_n(\mathbb{R}) \) n’est pas connexe par arcs car sinon \(\det(GL_n(\mathbb{R})) = \mathbb{R}^* \) serait connexe par arcs.
III Théorie des anneaux commutatifs
 A) Catégorie des anneaux

1) Définition

Définitions :
Anneaux (toujours unitaires, parfois commutatifs), morphismes d’anneaux,
sous–anneaux…
Attention : pour un morphisme d’anneaux, on a $\varphi(1)=1$.
Un sous–anneau contient 1 (exemple : $2\mathbb{Z}$ n’est pas un sous–anneau de \mathbb{Z})

2) Idéal d’un anneau commutatif

Définition :
Soit $(A,+,\times)$ un anneau commutatif.
Soit I une partie de A.
On dit que I est un idéal de A si :
• $(I,+)$ est un sous-groupe de $(A,+)$
• $\forall a \in A, \forall i \in I, ai \in I$ (on a alors aussi $ia = ai \in I$)

Remarque :
Si A n’est pas commutatif, on a toujours les notions d’idéal à
gauche/droite/bilatère : $\forall a \in A, \forall i \in I, ai \in I / ia \in I$ et $ai \in I$

Exemple :
Idéal principal engendré par $a \in A : aA = \{ax, x \in A\}$.

Théorème :
Soit A une partie de \mathbb{Z}. Les conditions suivantes sont équivalentes :
1) A est un sous-groupe de $(\mathbb{Z},+)$
2) A est un idéal de $(\mathbb{Z},+)$
3) $\exists n \in \mathbb{N}, A = n\mathbb{Z}$.
En particulier, tout idéal de \mathbb{Z} est principal.

Démonstration :
On a déjà vu que (1) \Rightarrow (3) , (3) \Rightarrow (2) est vrai, c’est l’idéal principal de \mathbb{Z}
engendré par n. et (2) \Rightarrow (1) aussi (par définition d’un idéal).

Remarque :
Il existe des idéaux non principaux.

Exemple :
$A = (\mathbb{Z}[X],+,$ est un sous–anneau de $\mathbb{R}[X]$.
Mais $I = 3\mathbb{Z}[X] + x\mathbb{Z}[X]$ est un idéal non principal.
3) Divisibilité dans un anneau commutatif

Définition :
Soit \((A,+,\times)\) un anneau commutatif.
Soient \(x, y \in A\).
On dit que \(x\) divise \(y\) (ou que \(y\) est un multiple de \(x\)) s’il existe \(z \in A\) tel que \(y = zx\).

Proposition :
Soient \((A,+,\times)\) un anneau commutatif, et \(x, y \in A\).
Les conditions suivantes sont équivalentes :
1) \(x\) divise \(y\).
2) \(y\) est un multiple de \(x\).
3) \(y \in xA\)
4) \(yA \subseteq xA\)

Exemple :
Les diviseurs de 1 sont les éléments inversibles de \(A\).
Diviseurs (non nuls) de 0 :
On dit que \(x\) divise 0 lorsque \(x \neq 0\) et \(\exists y \in A \setminus \{0\}, xy = 0\).
Un anneau sans diviseur de 0 est dit intègre.

Exemples :
- \(\mathbb{Z}/4\mathbb{Z}\) n’est pas intègre (\(2 \times 2 = 0\))
- \(A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, a, b \in \mathbb{R}\) est commutatif unitaire, mais non intègre :
\[
\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
\]

4) Eléments remarquables d’un anneau

(1) les éléments inversibles forment un sous-groupe pour \(\times\)…
(2) Outil important : soit \((A,+,\ast)\) un anneau.
Pour étudier \(a \in A\), on a intérêt à étudier les applications :
\(
\delta_a : A \to A \quad \text{et} \quad \gamma_a : A \to A
\)
\(x \mapsto ax\quad \text{et} \quad x \mapsto x^\ast a
\)

Proposition :
\(\delta_a\) et \(\gamma_a\) sont des endomorphismes du groupe \((A,+)\) (mais pas d’anneaux)
Exemple (on suppose \(A\) commutatif) :
\(\delta_a\) n’est pas injectif \(\iff\) \(a\) est un diviseur de 0.
\(\delta_a\) est bijective \(\iff\) \(a\) est inversible.
(3) Définition :
Un élément a non nul non inversible de A est dit irréductible (indécomposable) si $\forall b, c \in A, a = bc \Rightarrow b \in A^*$ ou $c \in A^*$
Un élément a est dit premier lorsque $\forall b, c \in A, a | bc \Rightarrow a | b$ ou $a | c$.

Exemple :
- Dans \mathbb{Z}, un nombre est premier si et seulement si il est irréductible.
- Soit $A = \{a + ib\sqrt{6}, a, b \in \mathbb{Z}\}$
Alors : A est un anneau, 2 est irréductible non premier.
En effet :
Déjà, A est un sous-anneau de $(\mathbb{C}, +, \times) \ldots$
$A^* = \{-1 ; 1\}$
1 et -1 sont inversible donc déjà $\{-1 ; 1\} \subset A^*$.
Soit $z \in A^*$.
Il existe alors $z' \in A$ tel que $zz' = 1$, disons $z = a + ib\sqrt{6}, z' = a' + ib'\sqrt{6}$
Alors $(a^2 + 6b^2)(a'^2 + 6b'^2) = 1$ (par passage au module)
Donc $a^2 + 6b^2 = \pm 1$ (et $a'^2 + 6b'^2 = \pm 1$)
Donc $a^2 + 6b^2 = 1$. Donc $a = \pm 1$ et $b = 0$.
Donc $z = \pm 1$. Donc $A^* = \{-1 ; 1\}$.
Maintenant :
Soient $z, z' \in A$, supposons que $zz' = 2$.
Alors $\left(\frac{1}{2}z \pm z' \frac{1}{2}\right)^2 = 4 \cdot (a^2 + 6b^2)(a'^2 + 6b'^2) = 4$
- 1^er cas : $a^2 + 6b^2 = a'^2 + 6b'^2 = 2$: impossible
- $2^\text{ème}$ cas : $a^2 + 6b^2 = 1 ; z$ est inversible.
- $3^\text{ème}$ cas : $a'^2 + 6b'^2 = 1 ; z'$ est inversible.
Mais 2 n’est pas premier :
On a $2 \times 3 = -(i\sqrt{6})^2$. Donc $2(i\sqrt{6})^2$.
Si 2 était premier, on aurait $2|\sqrt{6}$ ce qui est faux :
Sinon, il existe $z = a + ib\sqrt{6}$ tel que $2z = i\sqrt{6}$, alors $2a + 2ib\sqrt{6} = i\sqrt{6}$,
donc $a = 0$ et $b = \frac{1}{2}$, donc $z = \frac{\sqrt{6}}{2} \notin A$.

B) Exemples d’anneaux et de corps

$(\mathbb{Z}, +, \times), \mathbb{Q}, \mathbb{R}, \mathbb{C}$ sont des anneaux (et même des corps pour les trois derniers)
\mathbb{N} n’est pas un anneau (ni un corps)
Soit E un ensemble, on munit $P(E)$ de Δ et \cap ($A \Delta B = A \cup B \setminus A \cap B$: différence symétrique).
Alors $P(E)$ est un anneau (même une algèbre, appelée algèbre de Boole)
(montrer que $\chi_{A \Delta B} = \chi_A + \chi_B$, $\chi_{A \cap B} = \chi_A \times \chi_B$ où $\chi_A : E \rightarrow \mathbb{Z} / 2\mathbb{Z}$)
\[
\chi \mapsto \begin{cases}
1 & \text{si } x \in A \\
0 & \text{sinon}
\end{cases}
\]
\(\mathbb{Q}[i] = \{a + ib, a, b \in \mathbb{Q}\} \) est un sous-corps de \(\mathbb{C} \).
\(\mathbb{Z}[i] = \{a + ib, (a, b) \in \mathbb{Z}^2\} \) est un anneau, l’anneau des entiers de Gauss.

Extension :
On dit que \(x \in \mathbb{C} \) est algébrique lorsqu’il existe \(P \in \mathbb{Q}[X] \setminus \{0\} \) tel que \(P(x) = 0 \).
Exemple : \(i, \sqrt{2} \) sont algébriques, \(\pi \) et \(e \) ne le sont pas (ils sont transcendants)

Proposition (hors programme) :
Soit \(a \in \mathbb{C} \), algébrique.

On pose \(\mathbb{Q}[a] = \left\{ \sum_{j=0}^{n} \alpha_j a^j, n \in \mathbb{N}, \alpha_j \in \mathbb{Q} \right\} = \{ R(a) \in \mathbb{Q}[X] \} \).

Alors :
1. \(\mathbb{Q}[a] \) est un sous-corps de \(\mathbb{C} \).
2. \(\mathbb{Q}[a] \) est une \(\mathbb{Q} \)-algèbre de dimension finie.

Démonstration :
Comme \(a \) est algébrique, il existe \(P_0 \in \mathbb{Q}[X] \setminus \{0\} \) tel que \(P_0(a) = 0 \), disons
\(P_0 = x^d + c_{d-1}x^{d-1} + \ldots + c_0 \)
\(\mathbb{Q}[a] \) est une sous-algèbre de la \(\mathbb{Q} \)-algèbre \((\mathbb{C}, +, \cdot) \).
(\(\cdot \) : restriction du produit à \(\mathbb{Q} \times \mathbb{C} \)).
\(\mathbb{Q}[a] \) est de dimension finie : elle est engendrée par \((1, a, \ldots a^{d-1})\) où \(d = \deg P_0 \):
Soit \(z = R(a) \in \mathbb{Q}[a] \)
La division euclidienne de \(R \) par \(P_0 \) donne \(R = P_0Q + S \) où \(\deg S < d \).
Donc \(z = S(a) = \sum_{i=0}^{d-1} x_i a^i \), donc est combinaison linéaire de \((1, a, \ldots a^{d-1})\).

Montrons que \(\mathbb{Q}[a] \) est un sous-corps de \(\mathbb{C} \). Pour cela, montrons que tout élément \(x_0 \) non nul de \(\mathbb{Q}[a] \) est inversible dans \(\mathbb{Q}[a] \) : Soit \(x_0 \in \mathbb{Q}[a] \).
Posons \(\varphi : \mathbb{Q}[a] \rightarrow \mathbb{Q}[a] \)
\(y \mapsto x_0 y \)
Alors \(\varphi \in L_\mathbb{Q}(\mathbb{Q}[a]) \).
\(\ker \varphi = \{ y \in \mathbb{Q}[a], x_0 y = 0 \} = \{ 0 \} \)
Donc \(\varphi \) est injective, donc bijective (car \(\mathbb{Q}[a] \) est de dimension finie)
Donc \(\varphi \) est un automorphisme, donc surjectif.
Comme \(1 \in \mathbb{Q}[a] \), \(x_0 \) est inversible.

Construction d’anneaux et de corps :
On parle ici d’anneaux commutatifs
• Anneau produit :
Si \(A_1, A_2 \) sont deux anneaux, \(A_1 \times A_2 \) n’est jamais intègre : \((0;1) \times (1;0) = (0;0)\)
• Soit \(A \) un anneau.
\(A[X] \) : ensemble des polynômes à une indéterminée à coefficients dans \(A \).
Attention :
Si \(A \) n’est pas intègre, on n’a pas en général \(\deg(PQ) = \deg(P) + \deg(Q) \).
• Soit \(K \) un corps.
On définit le corps \(K(X) \) des fractions rationnelles en l’indéterminée \(X \).
De même que précédemment, \((K(X))(Y) \) sera noté plutôt \(K(X,Y) \).

C) Congruences modulo \(n \) dans \(\mathbb{Z} \), anneau quotient \(\mathbb{Z}/n\mathbb{Z} \).

Définition :
Pour \(a, b \in \mathbb{Z} \), \(a \equiv b \ [n] \iff n | b - a \).

Théorème :
La relation de congruence est une relation d’équivalence compatible avec + et \(\times \) (de \(\mathbb{Z} \)).

Compatibilité de + :
\[
\forall (x, x', y, y') \in \mathbb{Z}^4, \quad x \equiv x' \ [n], \quad y \equiv y' \ [n] \implies x + y \equiv x' + y' \ [n]
\]

Compatibilité de \(\times \):
Soit \((x, x', y, y') \in \mathbb{Z}^4 \) tel que \(x \equiv x' \ [n] \), \(y \equiv y' \ [n] \)
Il existe alors \(k \in \mathbb{Z} \) tel que \(x - x' = kn \), et \(l \in \mathbb{Z} \) tel que \(y - y' = ln \).
Alors \(xy - x'y' = \ldots = n(ky + lx + nkl) \), donc \(xy \equiv x'y' \ [n] \).

Plus généralement :
Soit \(A \) un anneau, \(I \) un idéal de \(A \).
On définit \(R \) sur \(A \) par : \(xRy \iff x - y \in I \).
Alors \(R \) est une relation d’équivalence, compatible avec + et \(\times \) (de \(A \)).

Notation :
On note \(\mathbb{Z}/n\mathbb{Z} \) l’ensemble des classes d’équivalences modulo \(n \). On note \(\bar{x} \) la classe de \(x \). (\(\bar{x} = x + n\mathbb{Z} \))

Exemple :
Avec \(n = 4 \):
\[
\mathbb{Z}/4\mathbb{Z} = \{0 = 4\mathbb{Z}, 1 = 1 + 4\mathbb{Z}, 2 = 2 + 2\mathbb{Z}, 3 = 3 + 3\mathbb{Z}\} \subset P(\mathbb{Z})
\]
On définit deux relations binaires entre \(\mathbb{Z}/n\mathbb{Z}^2 \) et \(\mathbb{Z}/n\mathbb{Z}^3 \) :
\[
R_+: \forall (a, b, c) \in \mathbb{Z}/n\mathbb{Z}^3, (a, b)R_+ c \iff \exists x \in a, \exists y \in b, c = x + y
\]
\[
R_\times : \forall (a, b, c) \in \mathbb{Z}/n\mathbb{Z}^3, (a, b)R_\times c \iff \exists x \in a, \exists y \in b, c = x \times y
\]

Théorème :
Soit \(n \geq 2 \).

1. \(R_+ \) et \(R_\times \) sont des applications de \(\mathbb{Z}/n\mathbb{Z}^3 \) dans \(\mathbb{Z}/n\mathbb{Z}^3 \).
On les note \(a_+: (a, b) \mapsto a +_n b \), \(a_\times : (a, b) \mapsto a \times_\times b \).

2. \((\mathbb{Z}/n\mathbb{Z}, +_n, \times_\times) \) est un anneau

3. Soit \(\pi : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \) la surjection canonique de \(\mathbb{Z} \) sur \(\mathbb{Z}/n\mathbb{Z} \).
\(\chi \mapsto \bar{\chi} \)
Alors \(\pi_+ \) est un morphisme surjectif d’anneaux de \((\mathbb{Z}, +, \times) \) dans \((\mathbb{Z}/n\mathbb{Z}, +_n, \times_\times) \) et de noyau \(n\mathbb{Z} \).
(4) $\pi_{n/\mathbb{Z}}$ est bijective, et ainsi $\mathbb{Z}/n\mathbb{Z}$ est de cardinal n.

Démonstration :

(1) : Pour R_π, on doit vérifier que tout couple de la source est en relation avec un unique c du but.

Soit $(a, b) \in \mathbb{Z}/n\mathbb{Z}^2$.

Existence :

Comme $a, b \in \mathbb{Z}/n\mathbb{Z}$, il existe $x, y \in \mathbb{Z}$ tels que $\overline{x} = a$, $\overline{y} = b$.

Alors, par définition de R_π, $(a, b)R_\pi x + y$

Unicité :

Supposons que $(a, b)R_\pi c$ et $(a, b)R_\pi c'$.

Il existe alors $(x, y) \in \mathbb{Z}^2$ tel que $a = \overline{x}$, $b = \overline{y}$ et $c = x + y$.

De même, il existe $(x', y') \in \mathbb{Z}^2$ tel que $a = \overline{x'}$, $b = \overline{y'}$ et $c' = x' + y'$.

On a $x \equiv x' [n]$, $y \equiv y' [n]$. Donc $x + y \equiv x' + y' [n]$, c'est-à-dire $c = c'$.

(2) : éléments de réponse :

Neutre pour $+_n : \overline{0}$.

Pour $a \in \mathbb{Z}/n\mathbb{Z}$, il existe $x \in \mathbb{Z}$ tel que $\overline{x} = a$, et on a $a +_n \overline{0} = \overline{x + 0} = \overline{x} = a$.

Neutre pour $\times_n : \overline{1}$.

(3) : π_n est un morphisme d’anneaux par définition de $+_n$ et \times_n :

$\pi_n(x + y) = \overline{x + y} = \overline{x} +_n \overline{y} = \pi_n(x) +_n \pi_n(y)$

(4) : faire une division euclidienne.

Exemple :

Quels sont les deux derniers chiffres de $N = 3^{2005}$?

On note a_1, a_6 ces deux derniers chiffres. Ainsi, $N \equiv 10a_1 + a_6 [100]$.

Remarque :

$x \equiv y [100] \iff 4 \times 25 \mid x - y \iff 4 \mid x - y$ et $25 \mid x - y \iff x \equiv y [4]$ et $x \equiv y [25]$ (Car $4 \times 25 = 1$)

On cherche donc $Cl_4(N)$ et $Cl_{25}(N)$.

- modulo 4 :
 $\overline{N} = \overline{3^{2005}} = \overline{-1}$. Donc $N \equiv -1 [4]$.

- modulo 25 :
 $\overline{N} = \overline{3^{2005}}$

 $\overline{3^0} = \overline{1}$ $\overline{3^1} = \overline{3}$ $\overline{3^2} = \overline{9}$ $\overline{3^3} = \overline{2}$ $\overline{3^4} = \overline{6}$ $\overline{3^5} = \overline{18} = \overline{-7}$

 Division euclidienne de 2005 par 20 :

 2005 = 20×100 + 5.

 Donc $\overline{3^{2005}} = \overline{3^5} = \overline{-7}$.

 Donc $N \equiv -7 [25]$.

- modulo 100 :
 Avec une méthode simple :

 18 $\equiv -7 [25]$ mais 18 $\not\equiv -1 [4]$

 Donc 4 et 3 sont les deux chiffres cherchés.
D) Propriétés de structure de $\mathbb{Z}/n\mathbb{Z}$.

Théorème :
Soit $n \geq 2$. Alors :
(1) $(\mathbb{Z}/n\mathbb{Z},_n^+_n)$ est un groupe cyclique
(2) Soit $x \in \mathbb{Z}$. Les conditions suivantes sont équivalentes :
- $x \wedge n = 1$ dans \mathbb{Z}.
- \bar{x} est un élément inversible de $(\mathbb{Z}/n\mathbb{Z},_n^+_n)$.
- $\{\bar{x}\}$ engendre $(\mathbb{Z}/n\mathbb{Z},_n^+_n)$.

Démonstration :
(1) : \bar{T} engendre $\mathbb{Z}/n\mathbb{Z}$.
(2) :
$x \wedge n = 1 \iff \exists (u,v) \in \mathbb{Z}, ux + vn = 1$

$\iff \exists (u,v) \in \mathbb{Z}, ux = 1 [n]$

$\iff \bar{x} \in \mathbb{Z}/n\mathbb{Z}^*$

D'où déjà l'équivalence entre les deux premiers tirets.
Supposons que \bar{x} est inversible dans $(\mathbb{Z}/n\mathbb{Z},_n^+_n)$.
Il existe alors $y \in \mathbb{Z}$ tel que $\bar{x} \times_n \bar{y} = \bar{T}$. On peut supposer que $y \in \mathbb{N}$.

Ainsi, $\bar{y} \bar{x} = \bar{T}$, donc $y \cdot \bar{x} = \bar{T}$.

Donc $\bar{T} \in \text{gr}(\{\bar{x}\})$.

Donc $\mathbb{Z}/n\mathbb{Z} = \text{gr}(\{\bar{x}\})$ (car \bar{T} est générateur de $\mathbb{Z}/n\mathbb{Z}$).
Si maintenant $\{\bar{x}\}$ engendre $(\mathbb{Z}/n\mathbb{Z},_n^+_n)$, alors il existe $y \in \mathbb{N}$ tel que $\bar{T} = y \cdot \bar{x}$, et donc $\bar{T} = \bar{y} \times_n \bar{x}$. Donc \bar{x} est inversible dans $\mathbb{Z}/n\mathbb{Z}$.
D'où les trois équivalences.

Corollaire :
Soit $n \geq 2$. Les conditions suivantes sont équivalentes :
(1) n est premier
(2) $(\mathbb{Z}/n\mathbb{Z},_n^+_n)$ est un corps.
(3) $(\mathbb{Z}/n\mathbb{Z},_n^+_n)$ est un anneau intègre.

Démonstration :
(1) \Rightarrow (2) :
Soit $y \in (\mathbb{Z}/n\mathbb{Z}) \setminus \{0\}$.
Il existe alors $p \not\in n\mathbb{Z}$ tel que $y = \bar{p}$.
Or, n est premier, et ne divise pas p. Donc $p \wedge n = 1$.

Donc $y = \bar{p}$ est inversible dans $\mathbb{Z}/n\mathbb{Z}$.

(2) \Rightarrow (3) : ok
(3) \Rightarrow (1) : montrons la contraposée :
Supposons non(1). Alors $n = a \times b$ ou $a, b \geq 2$

Donc $\bar{0} = \bar{a} \times \bar{b}$, et $\bar{a} \neq \bar{0}$, $\bar{b} \neq \bar{0}$ car $n \nmid a$ et $n \nmid b$.

Donc $\mathbb{Z}/n\mathbb{Z}$ n’est pas intègre.

En général, on note plutôt $(\mathbb{Z}/n\mathbb{Z},_n^+_n)$ que $(\mathbb{Z}/n\mathbb{Z},_n^+_n \times_n)$.
Notation : Si \(p \) est premier, \((\mathbb{Z}/p\mathbb{Z},+)\) est un corps, noté \(\mathbb{F}_p \) : corps de Galois de cardinal \(p \).

Pour \(n \in \mathbb{N} \), on pose \(\varphi(n) = \#((\mathbb{Z}/n\mathbb{Z})^*) \).
\(\varphi \) s’appelle la fonction indicatrice d’Euler.
Alors :
- \(\forall n \geq 2, \varphi(n) = \# \{ k \in [1,n] | k \wedge n = 1 \} \)
- \(\varphi(n) \) est aussi le nombre de générateurs de \((\mathbb{Z}/n\mathbb{Z},+)\).
- \(\forall n \geq 2, \varphi(n) \leq n-1 \), et il y a égalité si et seulement si \(n \) est premier.
Pour prolonger \(\varphi \), on pose \(\varphi(1) = 1 \).

E) Passage au quotient modulo \(n \).

Problème :
Soit \((G,\cdot)\) un groupe, et \(\sigma : (\mathbb{Z},+) \rightarrow (G,\cdot) \) un morphisme de groupe.
Existe-t-il \(\varphi \) morphisme de \((\mathbb{Z}/n\mathbb{Z},+)\) dans \((G,\cdot)\) tel que \(\sigma = \varphi \circ \pi_n \) (« \(\sigma \) peut-il se factoriser par \(\pi_n \) ? ») :

\[
\begin{array}{ccc}
(\mathbb{Z},+) & \xrightarrow{\sigma} & (G,\cdot) \\
\downarrow \pi_n & & \uparrow \varphi \\
(\mathbb{Z}/n\mathbb{Z},+) & & \\
\end{array}
\]

Théorème (pour les groupes) :
Soit \((G,\cdot)\) un groupe. Alors \(\sigma \) se factorise par \(\pi_n \) si, et seulement si, \(\sigma(n) = e_G \), c’est-à-dire si et seulement si \(n\mathbb{Z} \subset \ker \sigma \).

Démonstration :
Condition nécessaire :
Si \(\sigma = \varphi \circ \pi_n \), alors \(\sigma(n) = \varphi \circ \pi_n(n) = \varphi(0) = e_G \) (car \(\varphi \) est un morphisme)
Condition suffisante :
Supposons que \(n\mathbb{Z} \subset \ker \sigma \).
On considère la relation binaire \(R \) de source \(\mathbb{Z}/n\mathbb{Z} \) et de but \(G \) définie par :
\(\forall (a,g) \in \mathbb{Z}/n\mathbb{Z} \times G, aRg \Leftrightarrow \exists p \in \mathbb{Z}, a = \bar{p} \text{ et } g = \sigma(p) \).
Montrons que \(R \) est une application :
Pourtout \(a \in \mathbb{Z}/n\mathbb{Z} \), \(a \) s’écrit \(\bar{p} \), et \(a \) a au moins une image, à savoir \(g = \sigma(p) \).
Unicité : si \(aRy \) et \(aRy' \), alors il existe \(p, p' \in \mathbb{Z} \) tels que \(a = \bar{p} \) et \(a = \bar{p}' \), et
\(y = \sigma(p) \) et \(y' = \sigma(p') \).
Alors il existe \(k \in \mathbb{Z} \) tel que \(p' = p + kn \).
Donc \(\sigma(p + kn) = \sigma(p) = y \).
Donc \(R \) est une application. De plus, c’est un morphisme de groupes (…) Ainsi, \(\sigma \) se factorise par \(\pi_n \), et \(\sigma = R \circ \pi_n \).

Problème :
Soit \((A,+,\times)\) un anneau, \(\sigma : (\mathbb{Z},+,\times) \rightarrow (A,+,\times) \).
Existe-t-il \(\varphi : (\mathbb{Z}/n\mathbb{Z},+,\times) \rightarrow (A,+,\times) \) morphisme d’anneau tel que \(\sigma = \varphi \circ \pi_n \) ?

Chapitre 5 : Compléments de théorie des ensembles et algèbre générale
Algèbre générale
Théorème (pour les anneaux) :
\(\sigma \) se factorise par \(\pi_n \) si et seulement si \(\sigma(n) = 0_A \), c'est-à-dire si et seulement si
\(n\mathbb{Z} \subset \ker \sigma \).

Démonstration :
Condition nécessaire : ok
Condition suffisante :
On peut déjà définir \(\varphi : (\mathbb{Z}/n\mathbb{Z},+) \to (A,+) \) morphisme de groupes tel que
\(\sigma = \varphi \circ \pi_n \).

Il reste à vérifier que \(\forall (a,b) \in \mathbb{Z}/n\mathbb{Z}^2, \varphi(ab) = \varphi(a) \times \varphi(b) \) et \(\varphi(1) = 1_A \).

Déjà, \(\varphi(1) = \sigma(1) = 1_A \).

Soit \((a,b) \in \mathbb{Z}/n\mathbb{Z}^2 \), disons \(a = \bar{p}, b = \bar{q} \).

Alors \(\varphi(ab) = \varphi(\bar{pq}) = \sigma(pq) = \sigma(p)\sigma(q) = \varphi(\bar{p})\varphi(\bar{q}) = \varphi(a)\varphi(b) \).

Généralisation (hors programme) :
Groupe quotient :
Soit \((G,*) \) un groupe, \(H \) un sous-groupe de \(G \).

On définit dans \(G \) deux relations binaires \(R_H \) et \(_H R \) par :
\(\forall (x,y) \in G^2, xR_H y \iff x \ast y^{-1} \in H \)
\(\forall (x,y) \in G^2, _H R y \iff y^{-1} \ast x \in H \)

Alors \(R_H \) et \(_H R \) sont des relations d'équivalence (…)

Théorème :
Les propriétés suivantes sont équivalentes :
(1) \(H \) est un sous-groupe distingué de \(G \).
(2) \(R_H \) est compatible avec \(* \).
(3) \(_H R \) est compatible avec \(* \).
(4) \(R_H = _H R \).
(5) Il existe une loi \(T \) sur \(G/R_H \) telle que \((G,\times) \to (G/R_H, T) \) soit un morphisme.
\[g \mapsto Cl_{R_H}^T(g) \]
(6) Il existe une loi \(T \) sur \(G/_H R \) telle que \((G,\times) \to (G/_H R, T) \) soit un morphisme.
\[g \mapsto Cl_{_H R}^T(g) \]

Corollaire :
Une partie \(A \) de \((G,*) \) est un sous-groupe distingué si et seulement si il existe un morphisme de groupe \(\varphi : (G,*) \to (G',*) \) de noyau \(A \).

Démonstration (du théorème) :
Déjà, (1) \(\Rightarrow \) (2) :
Soient \((x,y),(x',y') \in G^2 \), supposons que \(xR_H y \) et \(x'R_H y' \).
Alors \(xy^{-1} \in H \) et \(x'y'^{-1} \in H \).
Comme \(x'y'^{-1} \in H \) et \(x \in G \) et \(H \) est distingué, on a \(x(x'y'^{-1})x^{-1} \in H \).
Comme de plus \(xy^{-1} \in H \), on a \((x(x'y'^{-1})x^{-1})(xy^{-1}) \in H \), c'est-à-dire par associativité \((xx')(y'^{-1}y^{-1}) = (xx')(yy')^{-1} \in H \).
De plus, on a aussi (2) \(\Rightarrow \) (5) (…)

Chapitre 5 : Compléments de théorie des ensembles et algèbre générale
Algèbre générale
(5) \(\Rightarrow\) (1) : si \(g \mapsto Cl(g)\) pour \(R_H\) est un morphisme, son noyau qui est \(\ker \phi = Cl(e_g) = H\) est distingué.

De même, (1) \(\Rightarrow\) (3) \(\Rightarrow\) (6) \(\Rightarrow\) (1).

Enfin, (1) \(\Leftrightarrow\) (4).

Pour les anneaux (commutatifs) :
Soit \(I\) un idéal de \((A,+,\times)\).
On définit \(R\) par : \(\forall (x,y) \in A^2\), \(xRy \iff x - y \in I\)

Théorème :
(1) \(R\) est une relation d’équivalence, compatible avec + et \(\times\).
(2) On peut munir \(A/R\) (qu’on note \(A/I\)) de deux lois \(+_I\) et \(\times_I\) telles que
\((A/I,+,\times_I)\) est un anneau et \(\pi : A \to A/I\) (projection canonique) est un
morphisme surjectif de noyau \(I\).

Conséquence :
\(I\) est un idéal de \(A\) si, et seulement si c’est le noyau d’un morphisme d’anneau
\(A \to B\).

Pour les groupes :
Soit \((G,\ast)\) un groupe, et \(H\) un sous-groupe distingué.
Soit \(\sigma\) un morphisme de \((G,\ast)\) dans un groupe \((G',\ast')\).

Existe-t-il \(\phi\) morphisme de groupe tel que \(\sigma = \phi \circ \pi\) ?

\[
\begin{array}{ccc}
(G,\ast) & \xrightarrow{\sigma} & (G',\ast') \\
\downarrow\pi & & \uparrow\phi \\
(G/H,T) & & \\
\end{array}
\]

Oui si et seulement si \(H \subset \ker \sigma\).

Enoncé analogue pour les anneaux

IV Application des anneaux \(\mathbb{Z}/n\mathbb{Z}\).

A) Au groupe monogène

Théorème :
Soit \((G,\ast)\) un groupe, et \(g \in G\).
(1) \(\sigma_g : n \in (\mathbb{Z},+) \mapsto g^n \in (G,\ast)\) est un morphisme de groupes d’image \(\text{gr}(g)\),
sous-groupe engendré par \(\{g\}\).
(2) Si \(\sigma_g\) est injectif, c’est un isomorphisme entre \((\mathbb{Z},+)\) et \(\text{gr}(g)\).
(3) Si \(\sigma_g\) n’est pas injectif, alors :
- Il existe \(n \geq 1\) tel que \(\ker \sigma_g = n\mathbb{Z}\).
- \(\sigma_g\) passe au quotient par \(n\mathbb{Z}\), c’est-à-dire qu’il existe un morphisme
\(\overline{\sigma}_g : (\mathbb{Z}/n\mathbb{Z},+) \to (G,\ast)\) tel que \(\forall x \in \mathbb{Z}, \sigma_g(x) = \overline{\sigma}_g(Cl_e(x))\)
- \(\overline{\sigma}_g\) est un isomorphisme de \((\mathbb{Z}/n\mathbb{Z},+)\) dans \((\text{gr}(g),\ast)\).
Démonstration :
(2) si \(\sigma \) est injectif, c’est un isomorphisme entre sa source et son image \((\text{gr}(g),\ast)\)
(3) si \(\sigma \) n’est pas injectif :
- ker\(\sigma \) est un sous-groupe de \((\mathbb{Z},+)\), non réduit à \(\{0\}\), donc de la forme \(n\mathbb{Z}\).
- D’après le théorème de passage au quotient par \(n\mathbb{Z}\), comme \(n\mathbb{Z} \subset \ker\sigma\), \(\sigma\)
passe au quotient par \(n\mathbb{Z}\).
- On sait que \(\overline{\sigma}\) est un morphisme surjectif.
Etude de ker\(\overline{\sigma} \) : soit \(a \in \mathbb{Z}/n\mathbb{Z}\), supposons que \(\overline{\sigma}(a) = e_G\).
Soit \(x \in \mathbb{Z}\) tel que \(Cl_x(a) = a\). On a alors \(\overline{\sigma}(a) = \overline{\sigma}(x) = e_G\).
Donc \(x \in n\mathbb{Z}\), soit \(a = \overline{0}\). Donc \(\overline{\sigma}\) est injectif.

Corollaire (classification des groupes monogènes) :
(1) Tout groupe monogène non fini est isomorphe à \((\mathbb{Z},+)\).
(2) Tout groupe cyclique de cardinal \(n\) est isomorphe à \((\mathbb{Z}/n\mathbb{Z},+)\).

Démonstration :
(1) On applique le théorème précédent avec \(G = \text{gr}(g)\) et \(\sigma\) est injectif.
(2) Soit \(G = \text{gr}(g)\) cyclique tel que \(#G = n\).
Alors \(\sigma : m \in (\mathbb{Z},+) \mapsto g^m \in (G,\ast)\) n’est pas injectif car \(\mathbb{Z}\) est infini.
Donc ker\(\sigma = m\mathbb{Z} \), pour \(m \geq 1\). Donc \(\sigma\) passe au quotient en un isomorphisme
\(\overline{\sigma} : (\mathbb{Z}/m\mathbb{Z},+) \rightarrow (G,\ast)\). Comme \(\sigma\) est une bijection, \(m = n\).

Exemple :
Le groupe des racines \(n\)-ièmes de l’unité \((\mu_n,\times)\)
\(\mu_n = \{z \in \mathbb{C}, z^n = 1\}\).
\(\mu_n\) est un sous-groupe de \((\mathbb{C}^\ast,\times)\), noyau du morphisme \(z \mapsto z^n\), et \(#\mu_n = n\).
Proposition :
\((\mu_n,\times)\) est un groupe cyclique, et \(\omega_k = e^{2\pi i/k}\) engendre \(\mu_n\) si et seulement si \(k \wedge n = 1\), c’est-à-dire si et seulement si \(\forall p \in \{1,...,n-1\}, \omega_k^p \neq 1\).
Dénomination :
Un tel \(\omega_k\) est une racine primitive \(n\)-ième de l’unité.
Démonstration :
Soit \(\omega = e^{2\pi i/n}\). On a \(\text{gr}(\omega) = \mu_n\) car \(\forall k \in [0,n-1], \omega_k = \omega^k\).
Donc \(\mu_n\) est cyclique.
Soit \(\sigma : (\mathbb{Z},+) \rightarrow (\mu_n,\times)\), morphisme surjectif.
\(k \mapsto \omega_k\)
Alors \(\mu_n\) passe au quotient par \(\overline{\sigma} : (\mathbb{Z}/n\mathbb{Z},+) \rightarrow (\mu_n,\times)\), isomorphisme.
Or, \(\forall k \in [0,n-1], \omega^k = \sigma(k) = \sigma(Cl_x(k))\).
Donc \(\omega_k\) engendre \(\mu_n\) si et seulement si \(Cl_x(k)\) engendre \((\mathbb{Z}/n\mathbb{Z},+)\), c’est-à-dire si et seulement si \(k \wedge n = 1\).
Montrons maintenant que \(k \land n = 1 \Leftrightarrow \forall p \in \{1,\ldots,n-1\}, \omega_k^p \neq 1 \)

Supposons que \(k \land n = 1 \). Soit \(p \in \mathbb{Z} \) tel que \(\omega_k^p = 1 \), c'est-à-dire \(e^{\frac{2\pi ip}{n}} = 1 \).

Alors \(n \mid pk \), donc d'après le théorème de Gauss \(n \mid p \).

Supposons que \(k \land n = d \geq 2 \).

Soit \(k' \) tel que \(k'd = k \), \(n' \) tel que \(n'd = n \) (\(n' \in \mathbb{N} \setminus \{1\} \)).

Alors \(\omega_k^p = e^{\frac{2\pi ip}{n}} = e^{2\pi ik'} = 1 \).

B) Ordre d’un élément (hors programme)

Définition :

Soit \((G,\ast)\) un groupe, \(g \in G \) et \(\sigma_g : n \mapsto g^n \).

1. Si \(\sigma_g \) est injectif, on dit que \(g \) est d’ordre infini.

2. Sinon, \(\ker \sigma_g = n\mathbb{Z} \) pour un certain \(n \in \mathbb{N}^* \), et \(n \) s’appelle l’ordre de \(g \).

Propriétés :

1. L’ordre de \(g \) est \(\# \text{gr}(g) \).

2. Si \(g \) est d’ordre infini, les puissances de \(g \) sont deux à deux distinctes.

3. Si \(g \) est d’ordre \(n \), alors \(\forall (k,l) \in \mathbb{Z}^2, g^k \ast g^l = g^{k+l} \Leftrightarrow k \equiv l \pmod{n} \) et \(\text{gr}(g) \) est isomorphe à \(\mathbb{Z} / n\mathbb{Z} \).

Démonstration :

On a montré que \(\text{gr}(g) \) est isomorphe soit à \((\mathbb{Z},+)\), soit à \((\mathbb{Z} / n\mathbb{Z},+)\).

C) Théorème de Lagrange (hors programme)

Cas d’un groupe abélien fini :

Soit \((G,\ast)\) un groupe abélien de cardinal \(n \).

Alors \(\forall g \in G, g^n = e_G \).

Démonstration :

\(x \in G \mapsto g \ast x \in G \) est une bijection (car d’inverse \(x \in G \mapsto g^{-1} \ast x \in G \))

Donc \(\prod_{x \in G} x = \prod_{x \in G} g \ast x = g^n \prod_{x \in G} x \).

Donc par régularité \(g^n = e_G \).

Théorème de Lagrange :

Soit \((G,\ast)\) un groupe fini, et \(H \subset G \) un sous-groupe de \(G \). Alors \(\# H \mid \# G \).

Cas particulier :

Soit \(g \in G \), \(H = \text{gr}(g) \). On a ordre \(g = \# H \mid \# G \).

Démonstration :

Considérons la relation binaire \(R \) définie sur \(G^2 \) par :

\(\forall (x,y) \in G^2, xRy \Leftrightarrow xy^{-1} \in H \).
Alors déjà R est une relation d’équivalence.

Soit $x_0 \in G$, on cherche $Cl_R(x_0)$.

Soit $y \in Cl_R(x_0)$. Alors $y \cdot x_0^{-1} \in H$. Soit $h \in H$ tel que $h = y \cdot x_0^{-1}$.

Donc $y = h \cdot x_0$.

Donc $Cl_R(x_0) \subseteq \{ x_0 \cdot h, h \in H \}$, et l’autre inclusion est évidente.

Donc $\#Cl_R(x_0) = \#H$ car $h \mapsto h \cdot x_0$ est injective.

Si on note N le nombre de classes d’équivalences, on a $\#G = N \cdot \#H$.

D) Application aux anneaux $\mathbb{Z}/n\mathbb{Z}$ (hors programme)

- Soit $(n,m) \in \mathbb{N}^2$, $n \geq 1$, $m \geq 1$.

Alors $\pi_n : (\mathbb{Z},+) \to (\mathbb{Z}/n\mathbb{Z},+)$ est un morphisme de groupes (resp. d’anneaux en $x \mapsto Cl_n(x)$

adaptant).

$\pi_n : (\mathbb{Z}/n\mathbb{Z},+) \to (\mathbb{Z}/m\mathbb{Z},+)$

$\uparrow \phi$

Une condition nécessaire et suffisante pour qu’il existe un morphisme de groupes (resp. d’anneaux) $\phi : (\mathbb{Z}/m\mathbb{Z},+) \to (\mathbb{Z}/n\mathbb{Z},+)$ tel que π_n passe au quotient modulo m est que $m\mathbb{Z} \subseteq \ker \pi_n = n\mathbb{Z}$, c’est-à-dire $n|m$.

Autrement dit, $(\mathbb{Z}/m\mathbb{Z},+) \to (\mathbb{Z}/n\mathbb{Z},+)$ est une application si et seulement si $n|m$, $Cl_m(x) \to Cl_n(x)$

et dans ce cas c’est un morphisme de groupes (resp. d’anneaux).

- Théorème chinois :

Soient $n,m \geq 1$, et $\psi : (\mathbb{Z}/nm\mathbb{Z},+) \to (\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z},+)$.

$Cl_{nm}(x) \mapsto (Cl_n(x), Cl_m(x))$

Alors ψ est une application, c’est même un morphisme d’anneaux, et c’est un isomorphisme si et seulement si $n \cdot m = 1$.

Démonstration :

Le fait que ψ est un morphisme découle du point précédent car $n|m$ et $m|nm$.

On a $\#\mathbb{Z}/nm\mathbb{Z} = nm = \#\mathbb{Z}/n\mathbb{Z} \times \#\mathbb{Z}/m\mathbb{Z}$.

Il reste donc à montrer la (non) injectivité pour avoir la (non) bijectivité

On cherche $\ker \psi$:

Soit $a \in \mathbb{Z}/nm\mathbb{Z}$. Soit $x \in \llbracket 0,nm-1 \rrbracket$ tel que $a = Cl_{nm}(x)$.

Alors $a \in \ker \psi$ si et seulement si $Cl_n(x) = 0$ et $Cl_m(x) = 0$, c’est-à-dire si et seulement si $n|x$ et $m|x$.

- Si $n \cdot m = 1$, alors $a \in \ker \psi \Rightarrow nm|x$, donc $a = 0$, donc ψ est injective.

- Si $n \cdot m \neq 1$, on pose $x = n \cdot m$; alors $x \notin nm\mathbb{Z}$, donc $\psi(Cl_{nm}(x)) = (0,0)$ et $Cl_{nm}(x) \neq 0$, donc ψ n’est pas injectif.

D’où le résultat.
Corollaire :
Soient G_1, G_2 deux groupes cycliques de cardinaux n_1, n_2.
Alors $G_1 \times G_2$ est cyclique si et seulement si $n_1 \wedge n_2 = 1$

Théorème chinois arithmétique (résolution de congruences multiples) :
Soient N_1, N_2 tels que $N_1 \wedge N_2 = 1$.
Soient a_1, a_2 tels que $a_1 N_1 + a_2 N_2 = 1$ (il en existe d’après le théorème de Bézout).
Soient enfin $b_1, b_2 \in \mathbb{Z}$.

Alors $x \in \mathbb{Z}$ vériﬁe

\[
\begin{cases}
 x \equiv b_1 [N_1] \\
 x \equiv b_2 [N_2]
\end{cases}
\]

si et seulement si $x \equiv b_1 a_1 N_1 + b_2 a_2 N_2 = b_1 a_1 N_1 \wedge N_2$.

En effet :
\[
Cl_{N_1}(x) = Cl_{N_1}(b_1 a_1 N_1) \times Cl_{N_1}(b_1) = Cl_{N_1}(b_1)
\]

De même, $Cl_{N_2}(x_0) = Cl_{N_2}(b_2)$

Donc x_0 est solution du système, et tout nombre $x = x_0 + \lambda N_1 N_2$ en est solution.

Réciproquement, si x est solution du système, alors $x - x_0$ est multiple de N_1 et N_2 (car $Cl_{N_1}(x_0) = Cl_{N_1}(b_1)$ et $Cl_{N_2}(x_0) = Cl_{N_2}(b_2)$), et donc $N_1 N_2 | x - x_0$ car $N_1 \wedge N_2 = 1$.

Exemples :
Résoudre dans $\mathbb{Z}/5\mathbb{Z}$ l’équation $x^2 + ax + b = 0$.
On a :
\[
x^2 + ax + b = 0 \iff (x + \frac{a}{2})^2 + b - \frac{a^2}{4} = 0 \iff (x + \frac{a}{2})^2 = -a^2 - b = \frac{a^2 + 4b}{4}.
\]
Ainsi :
- Si $a^2 + 4b = \Delta$ n’est pas un carré de $\mathbb{Z}/5\mathbb{Z}$, il n’y a pas de solution.
- Si $\Delta = 0$, $x = -\frac{a}{2} = -\frac{3a}{2} = 2a$
- Si Δ est un carré non nul, $\Delta = \delta^2$:
\[
\left(x + \frac{a}{2}\right)^2 - \left(\delta \frac{2}{2}\right)^2 = 0 \iff \left(x + \frac{a - \delta}{2}\right) \left(x + \frac{a + \delta}{2}\right) = 0
\]
\[
\iff x = -\frac{a \pm \delta}{2}
\]
Résoudre dans $\mathbb{Z}/143\mathbb{Z}$ l’équation $x^2 - 4x + 3 = 0$.
On a $143 = 13 \times 11$, donc $\mathbb{Z}/143\mathbb{Z}$ n’est pas un corps.
On cherche x sous la forme $x = Cl_{143}(n)$ où $n \in \mathbb{Z}$.

Alors x est solution si et seulement si $143 | n^2 - 4n + 3$, c’est-à-dire si et seulement si
11 | $n^2 - 4n + 3$ et 13 | $n^2 - 4n + 3$.
On a $n^2 - 4n + 3 = (n - 1)(n - 3)$ (dans n’importe quel $\mathbb{Z}/k\mathbb{Z}$).
Donc $11 \mid n^2 - 4n + 3 \iff n \equiv 1 [11]$ ou $n \equiv 3 [11]$, (car $\mathbb{Z}/11\mathbb{Z}$ est un corps)
Et de même $13 \mid n^2 - 4n + 3 \iff n \equiv 1 [13]$ ou $n \equiv 3 [13]$.

Chapitre 5 : Compléments de théorie des ensembles et algèbre générale
Algèbre générale
Donc x est solution si et seulement si \[\begin{cases} n \equiv 1 \pmod{13} \text{ ou } n \equiv 3 \pmod{13} \\ n \equiv 1 \pmod{11} \text{ ou } n \equiv 3 \pmod{11} \end{cases} \]

On a donc 4 solutions dans $\mathbb{Z}/143\mathbb{Z}$, à savoir 1, 3, 14, 133 :

Pour le dernier, méthode de Bézout :
On cherche n tel que $n \equiv 1 [11]$ et $n \equiv 3 [13] :
13 = 11 \times 1 + 2
11 = 2 \times 5 + 1.
Donc $1 = 11 - (13 - 11 \times 1) \times 5
1 = 6 \times 11 - 5 \times 13

Ainsi, on peut prendre $n = \frac{3 \times 6 \times 11 - 1 \times 5 \times 13}{11 - 13}$.

- Théorème (hors programme) :
 1. $\varphi : n \in \mathbb{N}^* \mapsto \#(\mathbb{Z}/n\mathbb{Z}) \in \mathbb{N}^*$ est une fonction multiplicative, c'est-à-dire :
 $\forall n, m \in \mathbb{N}^*, n \wedge m = 1 \Rightarrow \varphi(n \times m) = \varphi(n) \times \varphi(m)$.
 2. Si $n = p_1^{\alpha_1} \times \ldots \times p_r^{\alpha_r}$, où les p_j sont des nombres premiers deux à deux distincts $\alpha_j \geq 1$, alors $\varphi(n) = \prod_{j=1}^r \left(p_j^{\alpha_j} - p_j^{\alpha_j-1} \right) = n \prod_{j=1}^r \left(1 - \frac{1}{p_j} \right)$.

Exemple :
$\varphi(20) = \varphi(2^2 \times 5) = (2^2 - 2) \times (5 - 1) = 8$

Conséquence :
$\forall n \in \mathbb{Z}, n \wedge 20 = 1 \Rightarrow n^8 \equiv 1 [20]$.

En effet, il suffit d’appliquer le théorème de Lagrange à $(\mathbb{Z}/20\mathbb{Z})^*$ de cardinal 8 : Pour $n \in \mathbb{Z}$, si $n \wedge 20 = 1$, l’ordre de $\bar{n} = Cl_{20}(n)$ divise 8, et donc $\bar{n}^8 = \bar{1}$, c’est-à-dire $n^8 \equiv 1 [20]$.

Démonstration du théorème :
 1. $\varphi(nm) = \#(\mathbb{Z}/nm\mathbb{Z}^*)$

On dispose d’un isomorphisme d’anneaux :
$\psi : (\mathbb{Z}/nm\mathbb{Z}, +, \times) \rightarrow (\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}, +, \times)$.
Ainsi, $x \in \mathbb{Z}/nm\mathbb{Z}$ est inversible si et seulement si $\psi(x)$ l’est. Or, $(\alpha, \beta) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ est inversible si et seulement si $\alpha \in \mathbb{Z}/n\mathbb{Z}^*$ et $\beta \in \mathbb{Z}/m\mathbb{Z}^*$.
Ainsi, $\varphi(nm) = \#(\mathbb{Z}/m\mathbb{Z}^* \times \mathbb{Z}/m\mathbb{Z}^*) = \varphi(n) \varphi(m)$

 2. On a $n = \prod_{j=1}^r p_j^{\alpha_j}$

Comme les $p_j^{\alpha_j}$ sont premiers entre eux deux à deux, on a :
$\varphi(n) = \prod_{j=1}^r \varphi(p_j^{\alpha_j})$

On cherche ainsi $\varphi(p^\alpha)$ où p est premier et $\alpha \geq 1$.

Chapitre 5 : Compléments de théorie des ensembles et algèbre générale
Algèbre générale
\[\varphi(p^a) = \text{nombre de } k \in \mathbb{Z}, p^a \text{ tels que } k \land p^a = 1 \]
\[= \text{nombre de } k \in \mathbb{Z}, p^a \text{ tels que } p \nmid k. \]
\[= p^a - p^{a-1}. \]
\((\text{car } \# \{ k \in \mathbb{Z}, p^a \mid p \mid k \} = \# \{ p, i \in \mathbb{Z}, p^{a-1} \} = p^{a-1}) \)

V Caractéristique d’un corps, corps premier

Soit \(\overline{K} \) un corps commutatif, on pose \(\tau : (\mathbb{Z},+;\times) \rightarrow (\overline{K},+;\times) \).

\[
\begin{align*}
n \mapsto n1_{\overline{K}} \\
n1_{\overline{K}} = \begin{cases}
0 & \text{si } n = 0 \\
1_{\overline{K}} + \ldots + 1_{\overline{K}} & \text{si } n > 0 \\
-(n1_{\overline{K}}) & \text{si } n < 0
\end{cases}
\end{align*}
\]

(Remarque : \(\tau \) est le \(\sigma_{1_{\overline{K}}} \) du paragraphe précédent pour le groupe \((\overline{K},+)\) avec \(g = 1_{\overline{K}} \))

Théorème :

1. \(\tau \) est un morphisme d’anneaux (! Pas de corps : \(\mathbb{Z} \) n’est pas un corps).
2. Si \(\tau \) n’est pas injectif, son noyau est de la forme \(p\mathbb{Z} \), où \(p \) est premier, et il passe au quotient par l’idéal \(p\mathbb{Z} \) :
 \[
 (\mathbb{Z},+;\times) \xrightarrow{\pi_p} (\overline{\mathbb{Z}},+;\times) \xrightarrow{\tau} \overline{\mathbb{Z}}
 \]
 \(\pi_p \downarrow \uparrow \tau \) où \(\tau \) est un morphisme de corps.

3. Si \(\tau \) est injectif, on peut le prolonger en un morphisme de corps :

\[
\tau : \mathbb{Q} \rightarrow \overline{K} \quad \text{où} \quad \frac{\tau(a)}{\tau(b)} \text{ est indépendant du choix de } (a,b) \text{ tel que } r = \frac{a}{b}.
\]

Définition :

Si \(\tau \) est injectif, on dit que \(\overline{K} \) est de caractéristique 0.

Sinon, on dit que \(\overline{K} \) est de caractéristique finie \(p \) où \(p \) est tel que \(\ker \tau = p\mathbb{Z} \).

Remarque : un morphisme de corps est toujours injectif :

Si \(a \neq 0 \), alors \(a \times a^{-1} = 1_{\overline{K}} \), donc \(\varphi(a) \times \varphi(a)^{-1} = 1_{\overline{K}} \), d’où \(\varphi(a) \neq 0 \).

Définition :

Si \(\overline{K} \) est de caractéristique \(p \), il contient un sous–corps isomorphe à \(\mathbb{F}_p \) (à savoir \(\tau(\mathbb{F}_p) \)).

Ce corps s’appelle sous–corps premier de \(\overline{K} \) : c’est le plus petit sous–corps de \(\overline{K} \).

Si \(\overline{K} \) est de caractéristique 0 ; il contient un sous–corps isomorphe à \(\mathbb{Q} \) (\(\tau(\mathbb{Q}) \)). \(\tau(\mathbb{Q}) \) est appelé le corps premier de \(\overline{K} \), c’est aussi le plus petit sous–corps de \(\overline{K} \).

Démonstration du théorème :

(1)…
(2) montrons que p est premier (l’existence de p est évidente : $\ker \tau$ est un sous-groupe de \mathbb{Z}):

Supposons que $p = a \times b$, avec $a, b \geq 2$.
Alors $0_{\mathbb{K}} = \tau(p) = \tau(a) \times \tau(b)$. Comme \mathbb{K} est un corps, il est intègre, donc $a \in p\mathbb{Z}$ ou $b \in p\mathbb{Z}$, ce qui est impossible.

Existence de $\bar{\tau}$: théorème de passage au quotient par l’idéal $p\mathbb{Z}$.

(3) Si τ est injectif : on doit vérifier que si $\frac{a}{b} = \frac{a'}{b'}$, alors $\frac{\tau(a)}{\tau(b)} = \frac{\tau(a')}{\tau(b')}$, c’est-à-dire que $\tau(a)\tau(b') = \tau(a')\tau(b)$, ce qui est vrai car $ab' = a'b$ et τ est un morphisme d’anneaux.

On vérifie ensuite que $\bar{\tau}$ est un morphisme de corps…

(Comme il est injectif, sa corestriction à $\bar{\tau}(\mathbb{Q})$ est bijective, ce qui justifie l’affirmation faite dans la deuxième définition)

Remarque :
Un corps \mathbb{K} de caractéristique 0 est une \mathbb{Q}-algèbre pour les lois suivantes :

- Les lois $+$ et \times sont celles de \mathbb{K} en tant que corps.

Comme on peut identifier \mathbb{Q} à un sous-corps de \mathbb{K} par $\bar{\tau}$, on définit : par la restriction de $\times : \mathbb{K}^2 \to \mathbb{K}$ à $\mathbb{Q} \times \mathbb{K}$ (en fait, pour $a \in \mathbb{Q}$, $b \in \mathbb{K}$, $a \cdot b = \bar{\tau}(a) \times b$)

Il suffit ensuite de vérifier les différentes lois…

Un corps \mathbb{K} de caractéristique p est une \mathbb{F}_p-algèbre (il suffit ici encore d’identifier \mathbb{F}_p à $\bar{\tau}(\mathbb{F}_p)$, sous-corps de \mathbb{K})

Théorème :
Tout corps fini a un cardinal de la forme p^n (primaire), où p est premier.

Démonstration :
- Tout corps de caractéristique 0 est infini car $\tau : \mathbb{Z} \to \mathbb{K}$ est injectif.
- Donc si \mathbb{K} est fini, sa caractéristique est un nombre premier p.

Ainsi, \mathbb{K} est un \mathbb{F}_p-ev de dimension finie (car \mathbb{K} est fini et engendre \mathbb{K} comme \mathbb{F}_p-ev)

On pose $n = \dim_{\mathbb{F}_p} \mathbb{K}$. Donc \mathbb{K} est isomorphe à \mathbb{F}_p^n comme \mathbb{F}_p-ev, donc $\# \mathbb{K} = p^n$.

Théorème de Gallois, admis et hors programme :
Pour tout p premier et tout $n \in \mathbb{N}^*$, il existe un corps de cardinal p^n, unique à isomorphisme près.

Exemples :
Soit \mathbb{K} un corps de caractéristique p.
Alors $\forall x \in \mathbb{K}, p \cdot x = 0$, et $\varphi : \mathbb{K} \to \mathbb{K}$ est un endomorphisme de corps.

$x \mapsto x^p$

En effet :
- Soit $x \in \mathbb{K}$.
DÉJÀ, $p \cdot 1_{\mathbb{K}} = 0_{\mathbb{K}}$ (définition de la caractéristique)

Donc $p \cdot x = 1_{\mathbb{K}} \cdot x + 1_{\mathbb{K}} \cdot x + \ldots + 1_{\mathbb{K}} \cdot x = (p \cdot 1_{\mathbb{K}}) \cdot x = 0$.

- DÉJÀ : on a, pour tout $k \in]1, p - 1], p \mid \mathbb{C}_p^*$.

Chapitre 5 : Compléments de théorie des ensembles et algèbre générale
Algèbre générale
Page 25 sur 32
En effet, \(C_p^k = \frac{p!}{k!(p-k)!} = \frac{p}{k} C_{p-1}^k \), donc \(p|C_p^k \), et comme \(p \land k = 1 \), on a bien \(p|C_p^k \).

Maintenant :
Soient \(x, y \in \mathbb{K} \).
Alors \(\varphi(x \times y) = \varphi(x) \times \varphi(y) \) car \(\mathbb{K} \) est commutatif
\(\varphi(1_\mathbb{K}) = 1_\mathbb{K} \) .
\(\varphi(x + y) = (x + y)^p = \sum_{k=0}^{p} C_p^k x^k y^{p-k} \).
Or, \(\forall k \in [1, p-1], C_p^k x^{k} y^{p-k} = 0 \) car \(p \) divise \(C_p^k \).
Donc \(\varphi(x + y) = x^{p} + y^{p} = \varphi(x) + \varphi(y) \).

VI Exemples de corps

- Sous corps de \(\mathbb{C} \) : \(\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Q}[i] \) sont des corps de caractéristique 0.
- Soit \(p \) premier. \(\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \) est de caractéristique \(p \).

Exemples de corps infinis de caractéristique \(p \) :
\(\mathbb{F}_p \langle X \rangle \) (fractions rationnelles à une indéterminée)

Théorème de Fermat :
\(\forall x \in \mathbb{F}_p, x^p = x \), ou encore \(\forall n \in \mathbb{Z}, n^p \equiv n[p] \)

Démonstration :
- Si \(p = 2 \), alors \(n^2 \equiv n[2] \) car \(n^2 \) et \(n \) ont la même parité.
- Si \(p \geq 3 \) :
Montrons par récurrence que \(\forall n \in \mathbb{N}, n^p \equiv n[p] \).
Pour \(n = 0 \) : ok (\(0 \equiv 0[p] \)).
Soit \(n \in \mathbb{N} \), supposons que \(n^p \equiv n[p] \).
Alors \((n+1)^p = \sum_{k=0}^{p} C_p^k n^k = 1 + n^p \equiv n + 1[p] \) (car \(p|C_p^k, k \in [1, p-1] \)).

Pour \(n \in \mathbb{Z}, n \equiv m[p] \) où \(m \geq 0 \), et on travaille avec \(m \).
Autre démonstration (hors programme) :
Pour \(p \) premier, \((\mathbb{Z}/p\mathbb{Z})^\times \) est un groupe de cardinal \(p-1 \).
D’après le théorème de Lagrange, \(\forall a \in \mathbb{Z}/p\mathbb{Z} \setminus \{0\}, a^{p-1} = 1 \).
Donc \(\forall a \in \mathbb{Z}/p\mathbb{Z}, a^{p-1} = a \).

Remarque :
- Pour \(N \geq 2 \), on a (extension du théorème de Fermat) :
\(\forall n \in \mathbb{Z}, n \land N = 1 \Rightarrow n^{\varphi(N)} = 1 \) (dans \(\mathbb{Z}/N\mathbb{Z} \)).

Théorème de Wilson :
\(p \in \mathbb{N} \setminus \{0,1\} \) est premier si et seulement si \((p-1)! \equiv -1[p] \).
Démonstration :
- Si p n’est pas premier, alors $p = ab$, où $a, b \geq 2$.
Si $a \neq b$, alors $a \times b \times (p-1)!$, donc $(p-1)! \equiv 0 \pmod{p}$.
Si $a = b \geq 3$, alors $1 \leq a < 2a \leq p-1$.
Donc $a^2 = p(p-1)!$
Si $p = 4$, $(p-1)! \equiv 2 \pmod{4}$.
- Si p est premier ≥ 3 : on va montrer que $\prod_{a \in \mathbb{F}_p^*} a = -1$.

Soit $A = \left\{ x \in \mathbb{F}_p^*, \ x = \frac{1}{x} \right\}$. Alors $A = \{1, -1\}$. En effet :

Dans \mathbb{F}_p^*, $x = \frac{1}{x}$ équivaut à $(x - \overline{1})(x + \overline{1}) = \overline{0}$.

Ainsi, $\mathbb{F}_p^* \setminus A$ est de cardinal pair, et on peut regrouper ses éléments deux par deux : x avec $\frac{1}{x}$.

Donc $\prod_{a \in \mathbb{F}_p^* \setminus A} a = \overline{1}$, et comme $p \geq 3$, on a $-\overline{1} \neq \overline{1}$.

Donc $\prod_{a \in \mathbb{F}_p^*} a = \overline{1} \times (\overline{-1}) \times (\overline{1}) = \overline{-1}$.

Enfin, si $p = 2$, on a bien $1 \equiv -1 \pmod{2}$.

Remarque :
Pour $p \geq 3$, qu’obtient-on en regroupant x et $\frac{1}{x}$?

$A = \left\{ x \in \mathbb{F}_p^*, \ x = \frac{-\overline{1}}{x} \right\} = \left\{ x \in \mathbb{F}_p^*, \ x^2 + \overline{1} = \overline{0} \right\}$.

(1) Si l’équation $x^2 + \overline{1} = \overline{0}$ n’a pas de solution dans \mathbb{F}_p^* :

$\prod_{a \in \mathbb{F}_p^*} a = \prod_{a \in S} a \times \overline{-1} \times a$ où $\#S = \frac{p-1}{2}$.

Donc $-\overline{1} = (-\overline{1})^\frac{p-1}{2}$.

Ainsi, si $x^2 + \overline{1} = \overline{0}$ n’a pas de solution, on a $p \equiv 3 \pmod{4}$.

(2) Si elle a des solutions, elle en a deux opposées x_0 et $-x_0$.

$-\overline{1} = \prod_{a \in \mathbb{F}_p^*} a = \prod_{a \in S} a \times \frac{-\overline{1}}{a} \times x_0 \times (-x_0) \times \frac{p-1}{2}$

S est une partie de $\mathbb{F}_p^* \setminus \{\pm x_0\}$ de cardinal $\frac{p-3}{2}$

Donc $-\overline{1} = (-1)^{\frac{p-1}{2}}$, d’où $p \equiv 1 \pmod{6}$.
VII Propriétés générales de $\overline{K}[X]$ et $\overline{K}(X)$ (où K est un corps)

Soit \overline{K} un corps quelconque (commutatif). On étend sans difficulté au cas d’un corps quelconque les définitions et résultats suivants vus en première année :

- Opérations et structure de \overline{K}-algèbre commutative unitaire de $\overline{K}[X]$.
- Degré d’un polynôme, intégrité de $\overline{K}[X]$: polynômes unitaires (ou normalisés), degré d’un produit, d’une somme ; sous-\overline{K}-espace $\overline{K}_n[X]$ des polynômes de degré au plus n.
- Fractions rationnelles, corps $\overline{K}(X)$.
- Multiples et diviseurs d’un polynôme, polynômes associés. Division euclidienne dans $\overline{K}[X]$; algorithme de la division euclidienne.
- Polynôme scindé sur \overline{K} ; relations entre les coefficients et les racines d’un polynôme scindé.

Attention :
Le théorème de D’Alembert n’est pas vrai en général. Un corps dans lequel tout polynôme non constant est scindé est dit algébriquement clos.

Pour factoriser les polynômes de $\overline{K}[X]$, il ne suffit pas, en général, de considérer les facteurs de degré 1 ou 2 : il faut introduire la notion de polynôme irréductible (voir VIII)

- Fonction polynomiale associée à un polynôme. Équations algébriques. Zéros (ou racines) d’un polynôme ; reste de la division euclidienne d’un polynôme P par $X - a$; caractérisation des zéros de P par le fait que $X - a$ divise P. Orde de multiplicité d’un zéro du polynôme non nul P : c’est le plus grand entier m tel que $(X - a)^m$ divise P.
- Algorithme de Horner pour le calcul des valeurs d’une fonction polynomiale. Fonction rationnelle associée à une fraction rationnelle. Zéros et pôles d’une fraction rationnelle ; ordre de multiplicité.
- Polynôme dérivé. Linéarité de la dérivation, dérivée d’un produit. Dérivées successives, dérivée n-ième d’un produit (formule de Leibniz)

Attention :
L’application $\varphi : P \in \overline{K}[X] \mapsto \overline{P} \in \overline{K}$ qui a un polynôme associe sa fonction polynomiale est injective si, et seulement si, \overline{K} est infini, et on a même le théorème :

1. φ est un morphisme d’algèbre.
2. Si \overline{K} est fini, φ est injective non surjective.
3. Si \overline{K} est fini, φ est surjective non injective, et $\ker \varphi = P_0 \overline{K}[X]$ avec $P_0 = \prod_{a \in \overline{K}} (X - a) = X^q - X$, où $q = \# \overline{K}$.

Lorsque \overline{K} est infini, on peut ainsi identifier polynôme et fonction polynomiale associée.

Démonstration :
Déjà, c’est un morphisme d’algèbre…

Soit $P \in \ker \varphi$, et $a_1, a_2, ..., a_r$ des éléments deux à deux distincts de \overline{K}.

On a : $\forall i \in [1, r], \overline{P}(a_i) = 0$ (car $\overline{P} = \overline{0}$)

Comme les a_i sont distincts, on a $\prod_{i=1}^{r} (X - a_i) P$. Donc $P = 0$ ou $\deg P \geq r$.

Chapitre 5 : Compléments de théorie des ensembles et algèbre générale
Algèbre générale
Page 28 sur 32
(1) Si \(\mathbb{K} \) est infini, alors \(P = 0 \) (car si \(P \neq 0 \) de degré \(d \), on prend \(r = d + 1 \) et on a une contradiction)
\(\varphi \) n’est pas surjective car la fonction qui vaut \(1_{\mathbb{K}} \) en \(0_{\mathbb{K}} \) et 0 ailleurs n’est pas polynomiale (car \(\mathbb{K} \setminus \{0_{\mathbb{K}}\} \) est infini).

(2) Si \(\mathbb{K} \) est fini, on prend \(r = q = \# \mathbb{K} \), et on a, si \(P \in \ker \varphi , \prod_{a \in \mathbb{K}} X - a \bigg| P \); inversement,
\[
\text{si } \prod_{a \in \mathbb{K}} X - a \bigg| P, \text{ alors } \forall a \in \mathbb{K}, \tilde{P}(a) = 0 .
\]

Problème : pourquoi \(P_0 = X^q - X = \prod_{a \in \mathbb{K}} X - a \) ?

Vérifions que \(X^q - X \in \ker \varphi \) c’est-à-dire que \(\forall a \in \mathbb{K}, a^q = a \), ce qui est vrai d’après le théorème de Lagrange appliqué à \(\mathbb{K}^* \) pour \(a \neq 0 \) et évident pour \(a = 0 \).

Donc \(\prod_{a \in \mathbb{K}} X - a \bigg| X^q - X \). Or, ils sont tous deux unitaires, de degré \(q \), donc égaux.

Surjectivité : toute fonction est polynomiale : interpolation de Lagrange :

Pour \(f : \mathbb{K} \to \mathbb{K} \), on pose \(P = \sum_{a \in \mathbb{K}} f(a) \prod_{b \in \mathbb{K} \setminus \{a\}} \frac{X - b}{a - b} \), et on a \(\tilde{P} = f \).

Attention :
La formule de Taylor et son application à la caractérisation de la multiplicité d’une racine ne sont vérifiées que si \(\mathbb{K} \) est de caractéristique 0.

Si \(\mathbb{K} \) est de caractéristique \(p \) non nulle, les entiers multiples de \(p \) ne sont pas inversibles dans \(\mathbb{K} \), donc la formule de Taylor n’a pas de sens.

Remarque : si \(\mathbb{K} \) est de caractéristique 0, le noyau de la dérivation est constitué des polynômes constants, alors que si \(\mathbb{K} \) est de caractéristique \(p \) premier, il est constitué des polynômes en \(X^p \), c’est-à-dire de la forme \(\sum_{j=0}^{n} a_j X^j \).

Formule de Taylor pour les polynômes :
Si \(\mathbb{K} \) est de caractéristique 0, pour tout \(P \in \mathbb{K}[X] \) et tout \(a \in \mathbb{K} \), on a :
\[
P = \sum_{k=0}^{\infty} \frac{P^{(k)}(a)}{k!} (X - a)^k \quad \text{(somme finie)}
\]
\[
P(a + X) = \sum_{k=0}^{\infty} \frac{P^{(k)}(a)}{k!} X^k = \sum_{k=0}^{\infty} a^k \frac{P^{(k)}}{k!}.
\]
Si \(\mathbb{K} \) est de caractéristique 0, \(a \) est racine de multiplicité \(n \) si et seulement si :
\(P(a) = P'(a) = \ldots = P^{(n-1)}(a) = 0 \).
Faux en caractéristique \(p \) :
Par exemple avec \(\mathbb{K} = \mathbb{F}_p, P = X^p + 1, P' = pX^{p-1} = 0 \).
VIII Etude arithmétique de $\mathbb{K}[X]$ (où \mathbb{K} est un corps)

Remarque (hors programme) :
L’existence d’une division euclidienne dans $\mathbb{K}[X]$ permet d’obtenir les mêmes propriétés arithmétiques que pour \mathbb{Z}. Ce qui suit serait plus généralement valable dans un anneau euclidien, c’est-à-dire un anneau (commutatif) intègre $(A,+,\cdot)$ muni d’une application

$$
\varphi : A \setminus \{0\} \rightarrow \mathbb{N} \text{ telle que } \forall (a,b) \in A^2, b \neq 0 \Rightarrow \exists (q,r) \in A^2, a = bq + r \text{ et }
\begin{cases}
\varphi(r) = 0 \\
\varphi(r) < \varphi(q)
\end{cases}
$$

Une telle fonction φ s’appelle statheuclidien ; le degré et la valeur absolue sont des stathmes euclidiens respectivement sur $\mathbb{K}[X]$ et \mathbb{Z}.

Par exemple, les anneau $\mathbb{Z}[i]$, $\mathbb{Z}[j]$ sont des anneau euclidiens, on peut donc y faire la même arithmétique que dans \mathbb{Z}.

Théorème :
Soit \mathbb{K} un corps. Tout idéal de $\mathbb{K}[X]$ est principal, c’est-à-dire de la forme $I = P_0\mathbb{K}[X]$.

Démonstration :
Soit I un idéal de $\mathbb{K}[X]$, différent de $\{0\}$. Il contient donc un élément non nul de $\mathbb{K}[X]$. Ainsi, $\{\deg P, P \in I\} \subset \mathbb{N}$ et est non vide. Soit donc P_0 de degré minimal dans I. Alors $I = P_0\mathbb{K}[X]$. En effet :

- Déjà, $P_0\mathbb{K}[X] \subset I$ puisque I est un idéal de $\mathbb{K}[X]$.
- Soit maintenant $P \in I$. La division euclidienne de P par P_0 donne :
 $$P = P_0Q + R \text{ où } \deg R < \deg P_0.$$ Or, $R = P - P_0Q$, et $P \in I$, $P_0Q \in I$ donc comme I est un groupe $R \in I$. Comme P_0 est le polynôme non nul de degré minimal dans I, on a donc nécessairement $R = 0$. Donc $P = P_0Q$. Donc $P \in P_0\mathbb{K}[X]$. D’où l’autre inclusion et l’égalité.

Théorème de Bézout :
Soient $A, B \in \mathbb{K}[X]$.
Alors A et B sont premiers entre eux $\iff \exists (U, V) \in \mathbb{K}[X]^2$, $AU + BV = 1$.

(Même démonstration que dans \mathbb{Z})

Pour n polynômes :
Soient $P_1, P_2, \ldots, P_n \in \mathbb{K}[X] \setminus \{0\}$. Les propositions suivantes sont équivalentes :

1. P_1, P_2, \ldots, P_n sont premiers deux à deux (c’est-à-dire les seuls diviseurs communs sont les polynômes constants)
2. Il existe $(U_i)_{i=1}^n$ telle que $\sum_{i=1}^n P_iU_i = 1$.
3. L’idéal engendré par les P_i ($P_1\mathbb{K}[X] + \ldots + P_n\mathbb{K}[X]$) est $\mathbb{K}[X]$.

Démonstration :

2. \Rightarrow (1) : ok

3. \Rightarrow (2) : $P_1\mathbb{K}[X] + \ldots + P_n\mathbb{K}[X] = \mathbb{K}[X]$, alors comme $1 \in \mathbb{K}[X]$, il s’écrit sous la forme $\sum_{i=1}^n P_iU_i$.

Chapitre 5 : Compléments de théorie des ensembles et algèbre générale
Algèbre générale
(1) \implies (3) : on pose \(I = P_1\mathbb{K}[X] + ... + P_n\mathbb{K}[X] \).
Alors \(I \) est un idéal de \(\mathbb{K}[X] \), donc principal. Soit alors \(D \in \mathbb{K}[X] \) tel que \(I = D\mathbb{K}[X] \).
Alors \(D \neq 0 \) car \(P_i \in I \).
De plus, \(\forall i \in [1,n], P_i \in I \), donc \(P_i \) est multiple de \(D \). Donc \(D \) est constant, et \(I = \mathbb{K}[X] \).

Théorème de Gauss :
Soient \(A, B, C \in \mathbb{K}[X] \setminus \{ 0 \} \). Si \(A \) divise \(BC \) et si \(A \) est premier avec \(B \) alors \(A \) divise \(C \).

Théorème :
Dans l’anneau \(\mathbb{K}[X] \) (comme dans \(\mathbb{Z} \)), les éléments premiers et les éléments irréductibles sont les mêmes.
Tout élément \(A \in \mathbb{K}[X] \setminus \{ 0 \} \) s’écrit, de manière unique à permutation près des \(P_i \), sous la forme \(A = eP_1^{r_1} ... P_n^{r_n} \) où \(e = \text{cte} \), où les \(P_i \) sont irréductibles (ou premiers) et unitaires et où les \(r_i \) sont des entiers naturels.

Théorème :
Soit \((P_i)_{i \in [1,n]} \) une famille d’éléments non tous nuls de \(\mathbb{K}[X] \). Il existe un unique polynôme unitaire \(D \in \mathbb{K}[X] \) tel que \(\forall R \in \mathbb{K}[X], (\forall i, R \text{ divise } P_i \iff R \text{ divise } D) \).

Propriétés et définitions :
\(D \) s’appelle PGCD des \(P_i \). Il est caractérisé par le fait qu’il divise tous les \(P_i \) et qu’il existe des polynômes \((U_i)_{i \in [1,n]} \) tels que \(D = \sum_{i=1}^{n} U_i P_i \). En fait, \(D \) est le générateur unitaire de l’idéal \(P_1\mathbb{K}[X] + P_2\mathbb{K}[X] + ... + P_n\mathbb{K}[X] \).
Il est aussi caractérisé par le fait qu’il divise tous les \(P_i \) et que tout autre diviseur commun à tous les \(P_i \) divise \(D \); \(D \) est le diviseur commun de tous les \(P_i \) de plus grand degré.

Théorème :
Soit \((P_i)_{i \in [1,n]} \) une famille d’éléments non nuls de \(\mathbb{K}[X] \). L’ensemble des polynômes multiples de tous les \(P_i \) est l’intersection des idéaux \(P_i\mathbb{K}[X] \), c’est aussi un idéal. Ainsi, il existe un unique polynôme \(M \in \mathbb{K}[X] \) unitaire tel que :
\(\forall R \in \mathbb{K}[X], (\forall i, P_i \text{ divise } R \iff M \text{ divise } R) \).

Propriétés et définitions :
\(M \) s’appelle PPCM des \(P_i \). Il est caractérisé par le fait qu’il est multiple de tous les \(P_i \) et que tout autre multiple de tous les \(P_i \) est multiple de \(M \); \(M \) est le polynôme unitaire de plus degré multiple de tous les \(P_i \).

Théorème :
Le PGCD \(D \) et PPCM \(M \) des polynômes non nuls \(A \) et \(B \) sont liés par \(AB = \lambda MD \) où \(\lambda \) est le produit des dominants de \(A \) et \(B \).
Calcul avec la décomposition en irréductibles :

Notation :
Pour tout R irréductible unitaire et tout polynôme A non nul, on note $V_R(A)$ l’exposant de R de la décomposition de A. $V_R(A)$ s’appelle valuation R-adique de A.

Exemple :
$R = X - x_0$; $V_R(A)$ est la multiplicité de la racine x_0 de A.

Théorème :
Soient A_1, \ldots, A_n des polynômes non nuls ; pour tout polynôme R irréductible unitaire, on pose $\alpha_R = \min_{i\in[1,n]} (V_R(A_i))$, $\beta_R = \max_{i\in[1,n]} (V_R(A_i))$.

Alors $\alpha_R = \beta_R = 0$ sauf pour un nombre fini de R.
De plus, $PGCD(A) = \prod_R R^{\alpha_R}$ et $PPCM(A) = \prod_R R^{\beta_R}$.

Démonstration :
La même que dans \mathbb{Z}.