Chapitre 1 : Eléments de théorie générale

I Séries de Fourier

A) Développement d’une fonction périodique en série de Fourier

1) Série d’exponentielles imaginaires

- Théorème de Fourier :
 Soit \(f : \mathbb{R} \to \mathbb{C} \) périodique de période \(L \), de pulsation \(k = \frac{2\pi}{L} \). Si \(f \) est de carré sommable sur \([0, L] \), alors \(f(x) = \sum_{n=\infty}^{\infty} c_n e^{ik_n x} \) où, pour \(n \in \mathbb{Z} \) :

 \[k_n = n \times \frac{2\pi}{L} \]

 Et \(c_n = \frac{1}{L} \int_{x_0}^{x_0+L} f(x) e^{-ik_n x} dx \)

- Spectre de Fourier :
 C’est \(\{c_n, n \in \mathbb{Z}\} \) :

 \[
 |c_n| \quad \longrightarrow \quad n
 \]

 (En général, \(|c_n| \) décroît quand \(|n| \) augmente)

2) Série de sinus et de cosinus

- Cas général :
 \(f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos k_n x + \sum_{n=1}^{\infty} b_n \sin k_n x \) avec \(a_0 = \frac{1}{L} \int_{x_0}^{x_0+L} f(x) dx \),

 \[
 a_n = \frac{2}{L} \int_{x_0}^{x_0+L} f(x) \cos(k_n x) dx \quad \text{et} \quad b_n = \frac{2}{L} \int_{x_0}^{x_0+L} f(x) \sin(k_n x) dx
 \]

- Parité :
 Si \(f(x) \) est paire, on aura \(\forall n \in \mathbb{N}, b_n = 0 \)
 Si \(f(x) \) est impaire, on aura \(\forall n \in \mathbb{N}, a_n = 0 \)

- Cas d’une fonction réelle :
 Si \(a_n, b_n \in \mathbb{R}, a_n \cos(k_n x) + b_n \sin(k_n x) = a'_n \cos(k_n x + \varphi_n) \)

 Et donc \(f(x) = a_0 + \sum_{n=1}^{\infty} a'_n \cos(k_n x + \varphi_n) \)

 Le terme pour \(n = 1 \) s’appelle le fondamental ou la première harmonique. Celui pour \(n = 2 \) s’appelle deuxième harmonique, etc.
3) Égalité de Bessel–Parseval

\[
\frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} |f(x)|^2 \, dx = \sum_{n=-\infty}^{\infty} |c_n|^2 = |a_0|^2 + \frac{1}{2} \sum_{n=1}^{\infty} |a_n|^2 + |b_n|^2
\]

B) Développement d'une fonction de support fermé

1) Principe

![Diagram](image)

On peut ensuite reproduire le motif en une fonction périodique (éventuellement en ajoutant autre chose pour un raccordement continu…)

2) Exemple

![Diagram](image)

On a \(k_n = 2n \frac{\pi}{L} = n \frac{\pi}{l} \), et la fonction est impaire :

On trouve alors \(f(x) = \frac{8d}{\pi} \left(\sin \frac{\pi x}{l} - \frac{1}{9} \sin \frac{3\pi x}{l} + \frac{1}{25} \sin \frac{5\pi x}{l} + \ldots \right) \)

![Diagram](image)

C) Fonction spatiale et temporelle

1) Fonctions spatiales

\(x : \) abscisse, \(L: \) longueur (ou longueur d’onde), \(k = \frac{2\pi}{L}: \) pulsation spatiale.

On a \(f(x) = \sum_{n=-\infty}^{\infty} c_n e^{ikx} \).

2) Fonctions temporelles

\(x \rightarrow t \), \(L \rightarrow T \), \(\omega = \frac{2\pi}{T}: \) pulsation temporelle ; \(f(x) = \sum_{n=-\infty}^{\infty} c_n e^{i\omega t} \).

II Transformation de Fourier

A) Intégrale de Fourier

1) L’intégrale de Fourier comme limite d’une série de Fourier

On considère f définie sur \mathbb{R}, non périodique à priori.
On considère f_L périodique de période L telle que $f_L(x) = f(x)$ pour

$x \in \left[-\frac{L}{2}, \frac{L}{2} \right]$.

Ainsi,

$$f_L(x) = \sum_{n=-\infty}^{+\infty} \left(e^{i\kappa x} \frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} e^{-i\kappa x'} f(x') dx' \right)$$

On a $\kappa_{n+1} = \frac{2\pi}{L} (n+1), \kappa_n = \frac{2\pi}{L} n$. Donc $\frac{1}{L} = \frac{\kappa_{n+1} - \kappa_n}{2\pi}$

Et

$$f_L(x) = \sum_{n=-\infty}^{+\infty} \left(e^{i\kappa_n x} \frac{\kappa_{n+1} - \kappa_n}{2\pi} \int_{-\frac{L}{2}}^{\frac{L}{2}} e^{-i\kappa_n x'} f(x') dx' \right)$$

Quand $L \to +\infty$:

$$f_L(x) \to f(x), \ k_{n+1} - k_n \to dk, \sum_{n=-\infty}^{+\infty} \to \int_{-\infty}^{+\infty}$$

Et ainsi

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dk e^{i\kappa x} \int_{-\infty}^{+\infty} dx' e^{-i\kappa x'} f(x')$$

2) Transformée de Fourier

- Définition :

La transformée de Fourier de $f(x)$ est

$$\tilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-i\kappa x} f(x) dx$$

- Ainsi, on a le théorème (théorème de Fourier) :

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{i\kappa x} \tilde{f}(k) dk$$

3) Interprétation

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{i\kappa x} \tilde{f}(k) dk$$

f est donc la somme continue de fonctions sinusoïdales : $\tilde{f}(k)dk \leftrightarrow c_n$

Si f est périodique :

$$\tilde{f}(k) = \sqrt{2\pi} \sum_{n=-\infty}^{+\infty} c_n \delta(k - k_n)$$ où $k_n = n \frac{2\pi}{L}$:

$$|\tilde{f}(k)| \uparrow \uparrow \uparrow \uparrow k$$

Chapitre 1 : Eléments de théorie générale
Ondes
B) Propriétés

On note \(\mathcal{F} : f \mapsto \tilde{f} \)

Transposé :
\(f^*(x) \rightarrow \tilde{f}^*(-k) \)

Translation :
\(f(x-x_0) \rightarrow \mathcal{F}^{-1} e^{-ikx_0} \tilde{f}(k) \)
\(f(x)e^{ikx} \rightarrow \tilde{f}(k-k_0) \)

Dilatation :
\[f(ax) \rightarrow \frac{1}{|a|} \tilde{f}\left(\frac{k}{a}\right) \]

Avec \(a = 1 \) : \(\mathcal{F} \) conserve la parité.

Dérivation :
\(f^{(a)}(x) \rightarrow (ik)^a \tilde{f}(k) \)
\(\tilde{f}^{(a)}(k) \rightarrow (-ix)^a f(x) \)

Égalité de Parseval–Plancherel :
\[\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\tilde{f}(k)|^2 dk \]

C) Exemples

1) Fonction porte

- Définition :
\[\pi(x) = \begin{cases} 1 & \text{si } |x| \leq \frac{1}{2} \\ 0 & \text{si } |x| > \frac{1}{2} \end{cases} \]

- Transformation de Fourier de \(\pi\left(\frac{x}{l}\right) \) :
\[\tilde{\pi}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx e^{-ikx} \pi\left(\frac{x}{l}\right) = \frac{1}{\sqrt{2\pi}} \int_{-\frac{l}{2}}^{\frac{l}{2}} dx e^{-ikx} \]
\[= \frac{1}{\sqrt{2\pi}} \left(\frac{-1}{ik} \left(-2i \sin \frac{kl}{2} \right) \right) = \frac{l}{\sqrt{2\pi}} \sin \frac{kl}{2} = \frac{l}{\sqrt{2\pi}} \sin \left(\frac{kl}{2} \right) \]

(\(\text{sinc}(x) = \frac{\sin x}{x} \))

- Analyse :
On a \(\Delta x = l, \Delta k = 4\pi / l \), donc \(\Delta x \Delta k \approx 4\pi \)
2) Distribution delta de Dirac

- Transformée :
 \[f(x) = \delta(x-x_0) \]
 \[\tilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-ikx} \delta(x-x_0) \, dx = \frac{1}{\sqrt{2\pi}} e^{-ikx_0} \]

- Analyse :
 \[\frac{\tilde{f}(k)}{1/\sqrt{2\pi}} \]
 \[k \]

- Cas particulier :
 Si \(x_0 = 0 \), on a \(\tilde{f}(k) = \frac{1}{\sqrt{2\pi}} \)

3) Fonction sinusoidale

\[f(x) = e^{ik_0 x} \]
\[\tilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} xe^{-ik_0 x} \, dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dx e^{-(k-k_0)x} \]

On avait \(\delta(x-x_0) \to \frac{1}{\sqrt{2\pi}} e^{-ik_0 x} \to \delta(x-x_0) \)

Donc \(\delta(x-x_0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dke^{ikx} e^{-ik_0 x} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dke^{-ik(k-k_0)} \)

Et par identification : \(\delta(k_0-k) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dxe^{-i\pi(k-k_0)} \)

(On a changé \(k \to x \), \(x_0 \to k_0 \), \(x \to k_0 \))

C'est-à-dire \(\delta(k-k_0) = \frac{\tilde{f}(k)}{\sqrt{2\pi}} \)

Donc \(e^{ik_0 x} \to \sqrt{2\pi} \times \delta(k-k_0) \)

Remarque :
\[\cos(k_0 x) = \frac{1}{2} (e^{ik_0 x} + e^{-ik_0 x}) \]

On a donc un spectre :

\[\uparrow \]
\[x_0 \]
\[\uparrow \]
\[k_0 \]
\[\uparrow \]
\[k \]

Et la transformée : \(\tilde{f}(k) = \frac{\sqrt{2\pi}}{2} (\delta(k-k_0) + \delta(k+k_0)) \)
4) Peigne de Dirac

- Définition :

\[\varphi(x) = \sum_{n=-\infty}^{+\infty} \delta(x-n) \] \(\varphi \) : « cha », lettre cyrillique

- Transformée :

\[\tilde{\varphi}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dx e^{-ikx} \sum_{n=-\infty}^{+\infty} \delta(x-n) = \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{+\infty} e^{-ikn} \]

On peut montrer que \(\varphi(x) = \sum_{n=-\infty}^{+\infty} e^{2\pi i \pi x} \)

Ainsi, \(\tilde{\varphi}(k) = \frac{1}{\sqrt{2\pi}} \varphi \left(\frac{k}{2\pi} \right) \)

5) Train sinusoïdal

- Définition :

\[f(x) = a \sin(k_0 x) \]

Période : \(L = \frac{2\pi}{k_0} \)

On prend \(N \) périodes, réparties de part et d’autre de 0 :

Ainsi, \(f(x) = a \sin(k_0 x) \) si \(x \in \left[-\frac{NL}{2}, \frac{NL}{2} \right] \), et 0 sinon.

Largeur du train : \(NL \)

Remarque :

\[f(x) = ae^{i k_0 x} \varphi \left(\frac{x}{NL} \right) \]

- Transformée :

\[\tilde{f}(k) = \frac{2a k_0}{\sqrt{2\pi}} \sin \left(\frac{N\pi k - k_0}{2} \right) \]

(Vu après)
• Analyse :
Largeur : $\Delta x = NL$ pour f, $\Delta k = \frac{2k_0}{N} = \frac{4\pi}{NL}$ pour \tilde{f}.
Ainsi, $\Delta x \Delta k = 4\pi$

6) Gaussienne

$$f(x) = e^{-x^2/a^2}, \text{ où } a = \text{cte}$$

Largeur : $\Delta x \approx a$

$$\tilde{f}(k) = \frac{a}{\sqrt{2}} \frac{e^{-k^2/a^2}}{\sqrt{2}}; \text{ c'est aussi une Gaussienne, de largeur } \Delta k \approx \frac{2}{a},$$
donc $\Delta x \Delta k \approx 2$

D) Transformée de Fourier dans l’espace à trois dimensions

$$f(x, y, z) \rightarrow \tilde{f}(k_x, y, z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dx \ e^{-ik_x x} f(x, y, z)$$

$$\tilde{f}(k_y, k_z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dy \ e^{-ik_y y} \int_{-\infty}^{+\infty} dz \ e^{-ik_z z} f(x, y, z)$$

Puis :

$$\tilde{f}(k_x, k_y, k_z) = \frac{1}{(2\pi)^{3/2}} \int_{-\infty}^{+\infty} dz \ e^{-ik_z z} \int_{-\infty}^{+\infty} dy \ e^{-ik_y y} \int_{-\infty}^{+\infty} dx \ e^{-ik_x x} f(x, y, z)$$

$$= \frac{1}{(2\pi)^{3/2}} \iiint dx dy dz e^{-i(k_x x + k_y y + k_z z)} f(x, y, z)$$

On introduit $\vec{r} = (x, y, z)$, $\vec{k} = (k_x, k_y, k_z)$

Ainsi, $\tilde{f}(\vec{k}) = \frac{1}{(2\pi)^{3/2}} \iiint d^3r e^{-i\vec{k}\cdot\vec{r}} f(\vec{r})$

Et $f(\vec{r}) = \frac{1}{(2\pi)^{3/2}} \iiint d^3k e^{i\vec{k}\cdot\vec{r}} \tilde{f}(\vec{k})$

E) Transformée de Fourier spatiotemporelle

$$f(x, y, z, t) \rightarrow \tilde{f}(k_x, k_y, k_z, \omega), \text{ ou } f(\vec{r}, t) \rightarrow \tilde{f}(\vec{k}, \omega).$$
On a \(\tilde{f}(\vec{k}, \omega) = \frac{1}{4\pi} \iiint d^3r. dt \exp(-i(\vec{k} \cdot \vec{r} - \omega t)) f(\vec{r}, t) \)

(On prend la convention inverse pour \(t \) dans le signe de l’exponentielle)

Et \(f(\vec{r}, t) = \frac{1}{4\pi} \iiint d^3 r. dt \exp(i(\vec{k} \cdot \vec{r} - \omega t)) \tilde{f}(\vec{k}, \omega) \)

III Produit de convolution

A) Définition

\(f_1, f_2 \rightarrow f = f_1 \otimes f_2 \) défini par :

\[f(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_1(y) f_2(y') \delta(x - y - y') dy dy' \]

\[= \int_{-\infty}^{\infty} f_1(y) f_2(x - y) dy = \int_{-\infty}^{\infty} f_1(x - y) f_2(y) dy \]

B) Utilisation du produit de convolution

Montage 4f :

\[f(\vec{r}, t) = \frac{1}{4\pi^2} \iiint d^3 r. dt \exp(i(\vec{k} \cdot \vec{r} - \omega t)) \tilde{f}(\vec{k}, \omega) \]

On considère l’objet constitué de l’axe \(x' \).
On a une luminosité ponctuelle \(f_i(x') \).

Selon l’optique géométrique, l’image est caractérisée par \(f(x) = f_1(x) \)
A cause de la diffraction, il n’en est pas ainsi :

L’image d’un point lumineux (un « Dirac » de lumière) n’est pas un point lumineux, mais une tache, avec un étalement \(f_2(x - x_0) \)

On décompose alors l’axe \(x \) en petites quantités :

\[\text{Contribution de } dy \text{ en } P' \text{ à la luminosité en } P : f_2(x - y) f_1(y) dy \]

Donc en sommant : \(f(x) = \int_{-\infty}^{\infty} f_2(x - y) f_1(y) dy \)

Ainsi, le produit de convolution permet « d’étaler » une fonction sur une autre.
C) Exemple : convolution d’une porte et d’un peigne :

\[\mathcal{U}\left(\frac{x}{a}\right) \otimes \mathcal{P}\left(\frac{x}{L}\right) = \int_{-\infty}^{+\infty} \delta(y - an) \times \mathcal{P}\left(\frac{x - y}{L}\right) \, dy = \sum_{n=-\infty}^{+\infty} \delta\left(x - \frac{an}{L}\right) \]

(D) Propriétés

- \(\otimes \) est commutatif
- \(\delta \) est l’élément neutre du produit de convolution :
 \((f \otimes \delta)(x) = \int_{-\infty}^{+\infty} f(y) \delta(x-y) \, dy = f(x) \)

On note \(f = f_1 \otimes f_2 \) :

\[
\tilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_1(y) f_2(y') e^{-ik(y-y')} \, dy \, dy' \\
= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} d^2x \, d^2x' \left(e^{-ik(x-x')} \right) \delta(x-y') \\
= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dy \, e^{-iky} f_1(y) \int_{-\infty}^{+\infty} dy' \, e^{-iky'} f_2(y')
\]

- De la même façon, \(\tilde{\mathcal{F}}(f_1 \times f_2) = \frac{1}{\sqrt{2\pi}} \tilde{\mathcal{F}}(f_1) \otimes \tilde{\mathcal{F}}(f_2) \)

(E) Application au train sinusoïdal

On pose \(f = f_1 \times f_2 \), avec :

\[f_1(x) = a \sin(k_0 x), \text{ donc } \tilde{f}_1(k) = \frac{a\sqrt{2\pi}}{2i} (\delta(k-k_0) - \delta(k+k_0)) \]

Et \(f_2(x) = \mathcal{P}\left(\frac{x}{NL}\right), \text{ donc } \tilde{f}_2(k) = \frac{NL}{\sqrt{2\pi}} \text{sinc} \left(\frac{kNL}{2} \right) \)

Ainsi, \(\mathcal{F}(f) = \frac{1}{\sqrt{2\pi}} \tilde{f}_1 \otimes \tilde{f}_2 = \frac{a\sqrt{2\pi}}{2i} \frac{NL}{\sqrt{2\pi}} \text{sinc} \left(\frac{(k-k_0)NL}{2} \right) \)
IV Echantillonnage
A) Définition

\[t \rightarrow s(t) \]

\[\frac{t}{T} \]

\(T \): pas d’échantillonnage.
A la fonction \(s(t) \) on associe \(\{s_n, n \in \mathbb{Z}\} \) où \(s_n = s(nT) \)

B) Echantillonnage par un peigne de Dirac
1) Principe

\[e(t) = s(t) \times \mathcal{U}\left(\frac{t}{T}\right) \]

\[t \rightarrow e(t) \]

\[t \rightarrow s(t) \]

2) Echantillonnage d’un signal sinusoidal de pulsation \(\omega_0 \).

- Spectre de Fourier du signal échantillonné :

\[\tilde{e}(\omega) = \sqrt{2\pi} \tilde{s}(\omega) \otimes \mathcal{U}\left(\frac{\omega 2\pi}{\Omega}\right) \quad (\Omega = \frac{2\pi}{T}) \]

- \(\tilde{s}(\omega) \):

On a \(s = S \cos \omega_0 t = \frac{S}{2} (e^{i\omega t} + e^{-i\omega t}) \)

Donc \(\tilde{s}(\omega) = \frac{S}{2} \sqrt{2\pi} (\delta(\omega - \omega_0) + \delta(\omega + \omega_0)) \)

\[\tilde{s}(\omega) \quad \omega \]

\[-\omega_0 \quad \omega_0 \]

\[-\omega_0 \quad \omega_0 \]

\[\frac{\omega 2\pi}{\Omega} \]

\[\frac{\omega}{\Omega} \]

\[\frac{\omega}{\Omega} \]

\[\frac{\omega}{\Omega} \]

- \(\mathcal{U}\left(\frac{\omega 2\pi}{\Omega}\right) = \frac{1}{\sqrt{2\pi}} \mathcal{U}\left(\frac{\omega}{\Omega}\right) \)

- \(\tilde{e}(\omega) = \sqrt{2\pi} \frac{S}{2} (\delta(\omega - \omega_0) + \delta(\omega + \omega_0)) \otimes \mathcal{U}\left(\frac{\omega}{\Omega}\right) \)

\[\tilde{e}(\omega) \quad \omega \]

\[-\omega_0 \quad \omega_0 \]

\[\Omega - \omega_0 \quad \Omega + \omega_0 \]
• Reconstitution du signal de départ :
 - Filtre passe-bas idéal : c’est une fonction de transfert $H(\omega) = H e^{j\phi}$ telle que :

\[
\begin{array}{c}
\omega_c \\
\phi
\end{array}
\]

- Condition de Shannon pour pouvoir reconstituer le signal :
 Il faut trouver ω_0 tel que $\omega_0 < \omega_c < \Omega - \omega_b$:

\[
\begin{array}{c}
\omega_b \\
\omega_c \\
\omega_0
\end{array}
\]

Il faut donc que $\omega_0 < \Omega - \omega_0$, c’est-à-dire que les fourches ne se croisent pas.

3) Echantillonnage d’un signal de spectre borné

• Spectre du signal échantillonné :

\[
\begin{array}{c}
\tilde{\omega}(\omega) \\
\omega_i \\
\omega_f
\end{array}
\]

• Condition de Shannon :
 Il faut ici que $\omega_f < \omega_c < \Omega - \omega_M$, soit $\Omega > 2\omega_M$.

• Théorème de Shannon :
 Toute l’information d’un signal est contenue dans l’échantillonnage si l’échantillonnage a une pulsation $\Omega > 2\omega_M$ où ω_M est un majorant des pulsations du spectre de s.

C) Echantillonnage réel

• On fait les mesures sur un temps fini :

\[
\begin{array}{c}
\tau \\
\omega
\end{array}
\]

• On n’échantillonne pas indéfiniment : $e(t) = \ldots \times \pi$

• Le passe bas idéal n’existe pas.
 (Le deuxième point nuit au théorème de Shannon, mais pas le premier)