Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Partage dans les mêmes conditions 4.0 International ». https://www.immae.eu/cours/

Chapitre 11: Matrices

Dans ce chapitre, \mathbb{K} est un corps commutatif (souvent un sous corps de \mathbb{C}). Les lettres n, p, q...désignent des éléments de \mathbb{N}^* .

I Définition

A) Matrice

Définition:

Une matrice de type (n,p) à coefficients dans \mathbb{K} est une famille $(a_{i,j})$ d'éléments de \mathbb{K} indexée par $[\![1,n]\!] \times [\![1,p]\!]$. Leur ensemble est noté $\mathcal{M}_{n,p}(\mathbb{K})$. $\mathcal{M}_{n,n}(\mathbb{K})$ est noté aussi $\mathcal{M}_n(\mathbb{K})$.

B) Représentation d'une matrice

Une matrice $A=(a_{i,j})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$ de $\mathcal{M}_{n,p}(\mathbb{K})$ est représentée par un tableau à n lignes, p colonnes de sorte que, pour tout $(i,j)\in \llbracket 1,n\rrbracket \times \llbracket 1,p\rrbracket,\ a_{i,j}$ est placé sur la i-ème ligne de la j-ème colonne. Ainsi :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,p} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,p} \end{pmatrix} \in \mathcal{M}_{n,p}(\mathbb{K})$$

$$(11.1)$$

La *i*-ème ligne de A est $(a_{i,1},a_{i,2}\dots a_{i,p})\in \mathscr{M}_{1,p}(\mathbb{K})$ (matrice ligne) La j-ème colonne de A est $(a_{1,j},a_{2,j}\dots a_{n,j})\in \mathscr{M}_{n,1}(\mathbb{K})$ (matrice colonne)

Une matrice de type (n, n) s'appelle une matrice carrée d'ordre n.

II Matrice d'une famille de vecteurs dans une base

Ici, E est un K-ev de dimension p, muni d'une base $\mathscr{B}_E = (e_1, e_2, \dots e_p)$.

Soit $v \in E$, on lui associe la matrice colonne $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}$ de ses composantes dans la base \mathcal{B}_E .

L'application :

$$\varphi \colon E \longrightarrow \mathcal{M}_{p,1}(\mathbb{K})$$

$$v \longmapsto \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}$$

$$(11.2)$$

est évidemment bijective, d'inverse

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} \mapsto \sum_{i=1}^p x_i e_i \tag{11.3}$$

Plus généralement, étant donnée une famille $\mathscr{F} = (v_1, v_2 \dots v_q)$ d'éléments de E, on introduit la matrice $A \in \mathscr{M}_{p,q}(\mathbb{K})$ telle que, pour tout $j \in [1,q]$, la j-ème colonne de A soit la colonne des composantes de v_j dans la base \mathscr{B}_E . Cette matrice sera notée $\mathrm{mat}(\mathscr{F},\mathscr{B}_E)$.

Exemple:

$$P = 1 - 2X$$
, $Q = 3 + X^2$, $R = 1 + X + X^2$ (11.4)

Matrice de (P, Q, R) dans la base naturelle de $\mathbb{R}_2[X]$ $((1, X, X^2))$:

$$\begin{pmatrix}
1 & 3 & 1 \\
-2 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}$$
(11.5)

C'est aussi la matrice de ((1, -2, 0), (3, 0, 1), (1, 1, 1)) dans la base canonique de \mathbb{R}^3 .

III Matrice d'une application linéaire dans des bases

Définition:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base $\mathscr{B}_E = (e_1, e_2, \dots e_p)$.

Soit F un \mathbb{K} -ev de dimension n, muni d'une base $\mathscr{B}_F = (f_1, f_2, \dots f_n)$.

Soit $\varphi \in \mathcal{L}(E, F)$

La matrice de φ dans les bases \mathscr{B}_E et \mathscr{B}_F est, par définition, la matrice à n lignes, p colonnes, qui donne, par colonne, les $\varphi(e_j)$ dans la base \mathscr{B}_F :

C'est $\operatorname{mat}((\varphi(e_1), \varphi(e_2) \dots \varphi(e_p)), \mathscr{B}_F)$, notée $\operatorname{mat}(\varphi, \mathscr{B}_E, \mathscr{B}_F)$.

Proposition:

La matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ détermine une unique application linéaire $\varphi \in \mathcal{L}(E,F)$ telle que $A = \max(\varphi, \mathcal{B}_E, \mathcal{B}_F)$.

Démonstration:

C'est le fait que la donnée des images des vecteurs de \mathscr{B}_E détermine une et une seule application linéaire.

Ainsi, l'application
$$\phi_{\mathscr{B}_E,\mathscr{B}_F} \colon \mathscr{L}(E,F) \longrightarrow \mathscr{M}_{n,p}(\mathbb{K})$$
 est bijective. $\varphi \longmapsto \operatorname{mat}(\varphi,\mathscr{B}_E,\mathscr{B}_F)$

Cas particulier:

Si E=F et $\mathscr{B}_E=\mathscr{B}_F$, alors $\mathrm{mat}(\varphi,\mathscr{B}_E,\mathscr{B}_E)$, notée $\mathrm{mat}(\varphi,\mathscr{B}_E)$ est la matrice de φ dans la base \mathscr{B}_E

IV Le \mathbb{K} -ev $\mathscr{M}_{n,n}(\mathbb{K})$

 $Id\acute{e}$: Transporter avec $\varphi_{\mathscr{B}_E,\mathscr{B}_F}$ la structure de \mathbb{K} -ev de $\mathscr{L}(E,F)$ de sorte que $\varphi_{\mathscr{B}_E,\mathscr{B}_F}$ devienne un isomorphisme (et pas seulement une bijection).

A) Somme

Étude:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base $\mathscr{B}_E = (e_1, e_2, \dots e_p)$.

Soit F un \mathbb{K} -ev de dimension n, muni d'une base $\mathscr{B}_F = (f_1, f_2, \dots f_n)$.

Soit $f \in \mathcal{L}(E, F)$, de matrice $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ dans \mathcal{B}_E et \mathcal{B}_F . Soit $g \in \mathcal{L}(E, F)$, de matrice $B = (b_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ dans \mathcal{B}_E et \mathcal{B}_F .

Alors, pour tout $j \in [1, p]$:

$$(f+g)e_j = f(e_j) + g(e_f) = \sum_{i=1}^n a_{i,j}f_i + \sum_{i=1}^n b_{i,j}f_i = \sum_{i=1}^n (a_{i,j} + b_{i,j}f_i)$$
(11.6)

La matrice de f+g dans $\mathscr{B}_E,\,\mathscr{B}_F$ est donc la matrice $C=(c_{i,j})$ définie par :

$$\forall i \in [1, n], \forall j \in [1, p], c_{i,j} = a_{i,j} + b_{i,j}$$
(11.7)

Définition:

Soient $A=(a_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}}$ et $B=(b_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}}$ deux éléments de $\mathcal{M}_{n,p}(\mathbb{K})$. A+B est la matrice $C=(c_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}}$ telle que $\forall (i,j)\in \llbracket 1,n\rrbracket \times \llbracket 1,p\rrbracket, c_{i,j}=a_{i,j}+b_{i,j}$.

Théorème:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base $\mathscr{B}_E = (e_1, e_2, \dots e_p)$.

Soit F un \mathbb{K} -ev de dimension n, muni d'une base $\mathscr{B}_F = (f_1, f_2, \dots f_n)$.

Soient $f, g \in \mathcal{L}(E, F)$.

Alors $mat(f + g, \mathscr{B}_E, \mathscr{B}_F) = mat(f, \mathscr{B}_E, \mathscr{B}_F) + mat(g, \mathscr{B}_E, \mathscr{B}_F)$

Démonstration:

Résulte de l'étude.

B) Produit par un scalaire

L'étude est analogue à celle de la somme, avec $f \in \mathcal{L}(E, F)$ et $\lambda \in \mathbb{K}$

Définition:

Soient $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}, \lambda \in \mathbb{K}.$ λA est la matrice $A' = (a'_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ telle que $\forall (i, j)$

Théorème:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathscr{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathscr{B}_F .

Soit $f \in \mathcal{L}(E, F)$.

Alors $mat(\lambda \cdot f, \mathscr{B}_E, \mathscr{B}_F) = \lambda \cdot mat(f, \mathscr{B}_E, \mathscr{B}_F)$

C) Le \mathbb{K} -ev $\mathscr{M}_{n,n}(\mathbb{K})$

Théorème:

- $(\mathcal{M}_{n,p}(\mathbb{K}), +, \cdot)$ est un \mathbb{K} -ev.
- Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathscr{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathscr{B}_F .

Alors $\phi_{\mathscr{B}_E,\mathscr{B}_F} \colon \mathscr{L}(E,F) \longrightarrow \mathscr{M}_{n,p}(\mathbb{K})$ est un isomorphisme de \mathbb{K} -ev. $\varphi \longmapsto \operatorname{mat}(\varphi,\mathscr{B}_E,\mathscr{B}_F)$

Démonstration:

- Vérification immédiates des différentes règles de calcul dans un \mathbb{K} -ev (le neutre est noté $0_{\mathcal{M}_{n,p}(\mathbb{K})}$, matrice dont tout les coefficients sont nuls).
- Idem.

Cas particulier:

Si $E = \mathbb{K}^p$ muni de sa base canonique \mathscr{B}_p , et $F = \mathbb{K}^n$ muni de sa base canonique \mathscr{B}_n , alors l'isomorphisme $\phi \colon \mathscr{L}(\mathbb{K}^p, \mathbb{K}^n) \longrightarrow \mathscr{M}_{n,p}(\mathbb{K})$ est l'isomorphisme canonique de $\mathscr{L}(\mathbb{K}^p, \mathbb{K}^n)$ vers $\mathscr{M}_{n,p}(\mathbb{K})$.

D) Dimension

Théorème:

 $\mathcal{M}_{n,p}(\mathbb{K})$ est de dimension $n \times p$, une base naturelle de $\mathcal{M}_{n,p}(\mathbb{K})$ étant la famille des $E_{i,j}$ pour $(i,j) \in [\![1,n]\!] \times [\![1,p]\!]$ où $E_{i,j}$ est la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ dont tous les coefficients sont nuls sauf celui d'indice (i,j) qui vaut 1.

Démonstration:

Repose sur le fait que pour toute matrice $A=(a_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}}$ on a $A=\sum_{i,j}a_{i,j}E_{i,j}$.

Conséquence:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathscr{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathscr{B}_F .

Alors $\mathcal{L}(E,F)$ est de dimension $n \times p$.

Démonstration:

 $\mathscr{L}(E,F)$ est isomorphe à $\mathscr{M}_{n,p}(\mathbb{K})$.

V Produit matriciel

A) Définition

Étude:

Soit E un K-ev de dimension p, muni d'une base $\mathscr{B}_E = (e_1, e_2, \dots e_p)$.

Soit F un \mathbb{K} -ev de dimension n, muni d'une base $\mathscr{B}_F = (f_1, f_2, \dots f_n)$.

Soit G un K-ev de dimension m, muni d'une base $\mathscr{B}_G = (g_1, g_2, \dots g_m)$.

Soit $\psi \colon E \to G$ linéaire.

Soit $\varphi \colon G \to F$ linéaire.

Alors $\varphi \circ \psi$ est linéaire de E dans F.

Soit $A = \text{mat}(\varphi, \mathscr{B}_G, \mathscr{B}_E) = (a_{i,j}) \in \mathscr{M}_{n,m}(\mathbb{K}).$

Soit $B = \max(\psi, \mathcal{B}_E, \mathcal{B}_G) = (b_{i,j}) \in \mathcal{M}_{m,p}(\mathbb{K}).$

Soit $C = \text{mat}(\varphi \circ \psi, \mathscr{B}_E, \mathscr{B}_F) = (c_{i,j}) \in \mathscr{M}_{n,p}(\mathbb{K}).$

Pour tout $j \in [1, p]$, on a :

$$\varphi \circ \psi(e_{j}) = \varphi(\psi(e_{j})) = \varphi\left(\sum_{k=1}^{m} b_{k,j} g_{k}\right) = \sum_{k=1}^{m} b_{k,j} \varphi(g_{k})$$

$$= \sum_{k=1}^{m} b_{k,j} \left(\sum_{i=1}^{n} a_{i,k} f_{i}\right) = \sum_{k=1}^{m} \left(\sum_{i=1}^{n} a_{i,k} b_{k,j} f_{i}\right)$$

$$= \sum_{\substack{i \in [\![1,n]\!], \\ k \in [\![1,m]\!]}} a_{i,k} b_{k,j} f_{i} = \sum_{i=1}^{n} \left(\sum_{k=1}^{m} a_{i,k} b_{k,j} f_{i}\right)$$

$$= \sum_{i=1}^{n} \left(\sum_{k=1}^{m} a_{i,k} b_{k,j}\right) f_{i}$$

$$(11.8)$$

Donc $\forall i \in [1, n], c_{i,j} = \sum_{k=1}^{m} a_{i,k} b_{k,j}$.

Donc $\forall (i,j) \in [1,n] \times [1,p], c_{i,j} = \sum_{k=1}^{m} a_{i,k} b_{k,j}$

Définition:

Soit $A \in \mathcal{M}_{n,m}(\mathbb{K})$, $B \in \mathcal{M}_{m,p}(\mathbb{K})$. On note $A \times B$ la matrice C, élément de $\mathcal{M}_{n,p}(\mathbb{K})$, définie par $\forall i \in [1, n], \forall j \in [1, p], c_{i,j} = \sum_{k=1}^{m} a_{i,k} b_{k,j}$

Théorème:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathscr{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathscr{B}_F .

Soit G un \mathbb{K} -ev de dimension m, muni d'une base \mathscr{B}_G .

Soit $\psi \in \mathcal{L}(E,G)$, $\varphi \in \mathcal{L}(G,F)$. Alors:

$$\operatorname{mat}(\varphi \circ \psi, \mathscr{B}_E, \mathscr{B}_F) = \operatorname{mat}(\varphi, \mathscr{B}_G, \mathscr{B}_F) \times \operatorname{mat}(\psi, \mathscr{B}_E, \mathscr{B}_G)$$
(11.9)

Démonstration:

Résulte de l'étude.

Exemple:

$$\begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix} \times \begin{pmatrix} 3 & -1 \\ 4 & 7 \end{pmatrix} = \begin{pmatrix} -1 & -8 \\ 22 & 26 \end{pmatrix} \tag{11.10}$$

B) Composantes de l'image d'un vecteur

Théorème:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base $\mathscr{B}_E = (e_1, e_2, \dots e_p)$.

Soit F un \mathbb{K} -ev de dimension n, muni d'une base $\mathscr{B}_F = (f_1, f_2, \dots f_n)$.

Soit $\varphi \in \mathcal{L}(E, F)$, $A = \max(\varphi, \mathcal{B}_E, \mathcal{B}_F)$.

Soit $u \in E$, $X \in \mathcal{M}_{p,1}(\mathbb{K})$ la colonne des composantes de u dans \mathcal{B}_E .

Soit $v \in F$, $Y \in \mathcal{M}_{n,1}(\mathbb{K})$ la colonne des composantes de v dans \mathscr{B}_F .

On a l'équivalence : $v = \varphi(u) \iff Y = A \times X$.

Démonstration: Notons $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}, X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}, Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$

On a : $u = \sum_{j=1}^{p} x_j e_j$. Donc

$$\varphi(u) = \sum_{j=1}^{p} x_j \varphi(e_j) = \sum_{j=1}^{p} x_j \left(\sum_{i=1}^{n} a_{i,j} f_i\right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{p} x_j a_{i,j}\right) f_i$$

$$i\text{-ème composante de}$$

$$\varphi(u) \text{ dans la base}$$

$$(f_i, f_2, \dots, f_n)$$

Ainsi,

$$v = \varphi(u) \iff v \text{ et } \varphi(u) \text{ ont les mêmes composantes dans } \mathscr{B}_F$$
 (11.12)

$$\iff \forall i \in [1, n], y_i = \sum_{j=1}^p a_{i,j} x_j \tag{11.13}$$

$$\iff Y = A \times X \tag{11.14}$$

En effet:

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,p} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,p} \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^p a_{1,j} x_j \\ \sum_{j=1}^p a_{2,j} x_j \\ \vdots \\ \sum_{j=1}^p a_{n,j} x_j \end{pmatrix}$$
(11.15)

Exemple:

Soit $\varphi \in \mathcal{L}(\mathbb{R}^2)$ de matrice $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ dans la base canonique \mathscr{B}_2 de \mathbb{R}^2 .

Notons $\mathscr{B}_2 = (e_1, e_2)$; alors $\varphi(e_1) = (1, 2), \varphi(e_2) = (3, 4)$.

Pour tout (x, y) de \mathbb{R}^2 , on a $\varphi(x, y) = (x', y')$,

avec
$$A \times \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix}$$
, soit $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 3y \\ 2x + 4y \end{pmatrix}$.

C) Propriétés du produit

Proposition:

Pour tous $A, A' \in \mathcal{M}_{n,p}(\mathbb{K}), B, B' \in \mathcal{M}_{p,q}(\mathbb{K}), C \in \mathcal{M}_{q,r}(\mathbb{K}), \lambda \in \mathbb{K}$, on a :

1.
$$(A \times B) \times C = A \times (B \times C) = A \times B \times C$$

2.
$$(A + A') \times B = A \times B + A' \times B$$

3.
$$A \times (B + B') = A \times B + A \times B'$$

4.
$$(\lambda A) \times B = \lambda . (A \times B) = A \times (\lambda B)$$

5.
$$A \times I_p = A$$
 et $I_p \times B = B$, où $I_p = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} = (\delta_{i,j})_{\substack{1 \le i \le p \\ 1 \le j \le p}}$ avec $\delta_{i,j} = 1$ si $i = j$, 0

sinon.

Démonstration:

En passant par les applications linéaires, par exemple pour (2) :

Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathscr{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathscr{B}_F .

Soit G un \mathbb{K} -ev de dimension q, muni d'une base \mathscr{B}_G .

Soient $\varphi, \varphi' \in \mathcal{L}(E, F)$ de matrices A, A' dans les bases \mathcal{B}_E et \mathcal{B}_F .

Soit $\psi \in \mathcal{L}(G, E)$ de matrice B dans les bases \mathcal{B}_G et \mathcal{B}_E .

Alors:

$$(A + A') \times B = \max ((\varphi + \varphi') \circ \psi, \mathcal{B}_G, \mathcal{B}_F)$$
(11.16)

$$= \max \left(\varphi \circ \psi + \varphi' \circ \psi, \mathscr{B}_G, \mathscr{B}_F \right) \tag{11.17}$$

$$= \max (\varphi \circ \psi, \mathscr{B}_G, \mathscr{B}_F) + \max (\varphi' \circ \psi, \mathscr{B}_G, \mathscr{B}_F)$$
(11.18)

$$= A \times B + A' \times B \tag{11.19}$$

(On procède de la même manière pour les autres formules)

La démonstration directe sans passer pas les applications linéaires est pénible.

Remarque:

 I_p s'appelle la matrice unité d'ordre p.

Attention : Il n'y a pas commutativité en général :

- $A \times B$ peut être défini mais pas $B \times A$.
 - Exemple: A de type (n, p), B de type (p, q) avec $q \neq n$.
- $A \times B$ et $B \times A$ peuvent être définies mais pas de même type.

Exemple: A de type (n, p), B de type (p, n) avec $p \neq n$.

• $A \times B$ et $B \times A$ peuvent être définies, de même type mais différentes.

Exemple: A de type (n, n), B de type (n, n):

$$\begin{pmatrix} 1 & -1 \\ 7 & -7 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \tag{11.20}$$

$$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 7 & -7 \end{pmatrix} = \begin{pmatrix} 15 & -15 \\ 15 & -15 \end{pmatrix}$$
 (11.21)

Il n'y a pas intégrité non plus (voir exemple ci-dessus).

VI La \mathbb{K} -algèbre $\mathscr{M}_n(\mathbb{K})$

A) Rappel

 $\mathcal{M}_n(\mathbb{K}) = \mathcal{M}_{n,n}(\mathbb{K})$: ensemble des matrices d'ordre n à coefficients dans \mathbb{K} .

Une \mathbb{K} -algèbre est un ensemble A muni de deux lois de composition internes +, \times et d'une loi à opérateurs dans \mathbb{K} tels que :

- $(A, +, \cdot)$ est un \mathbb{K} -ev.
- × est associative, distributive sur + et, pour tout $\lambda \in \mathbb{K}$ et tous, $a, b \in A$, $(\lambda a) \times b = \lambda \cdot (a \times b) = a \times (\lambda \cdot b)$.
- il existe un neutre 1_A pour \times .

Exemple: $\mathbb{K}, \mathscr{F}(\mathbb{K}, \mathbb{K}), \mathbb{K}[X]$

B) Théorème

Théorème:

- $(\mathcal{M}_n(\mathbb{K}), +, \times, \cdot)$ est une \mathbb{K} -algèbre.
- Si E est un \mathbb{K} -ev de dimension n muni d'une base \mathscr{B}_E , alors l'application $\phi_{\mathscr{B}_E}\colon \mathscr{L}(E) \longrightarrow \mathscr{M}_n(\mathbb{K})$ est un isomorphisme de \mathbb{K} -algèbre. (On sait déjà que $\varphi \longmapsto \mathrm{mat}(\varphi,\mathscr{B}_E)$ $(\mathscr{L}(E),+,\circ,\cdot)$ est une \mathbb{K} -algèbre)

Démonstration:

- On sait que $(\mathcal{M}_n(\mathbb{K}), +, \cdot)$ est un \mathbb{K} -ev (de dimension n^2). De plus, selon le paragraphe précédent, \times est une loi de composition interne sur $\mathcal{M}_n(\mathbb{K})$, associative, distributive sur +, admet comme élément neutre I_n , et « les scalaires sortent des produits ».
- On sait déjà que $\phi_{\mathscr{B}_E}$ est un isomorphisme de \mathbb{K} -ev. De plus, pour tous $\varphi, \psi \in \mathscr{L}(E) : \phi_{\mathscr{B}_E}(\varphi \circ \psi) = \max(\varphi \circ \psi, \mathscr{B}_E) = \max(\varphi, \mathscr{B}_E) \times \max(\psi, \mathscr{B}_E) = \phi_{\mathscr{B}_E}(\varphi) \times \phi_{\mathscr{B}_E}(\psi)$, et $\phi_{\mathscr{B}_E}(\mathrm{Id}_E) = \max(\mathrm{Id}_E, \mathscr{B}_E) = I_n$.

Remarque:

Si on note \mathscr{B}'_E une autre base de E, alors l'application $\mathscr{L}(E) \longrightarrow \mathscr{M}_n(\mathbb{K})$ est toujours un $\varphi \longmapsto \mathrm{mat}(\varphi, \mathscr{B}_E, \mathscr{B}'_E)$ isomorphisme de \mathbb{K} -ev mais plus de \mathbb{K} -algèbre (car $\mathrm{mat}(\mathrm{Id}_E, \mathscr{B}_E, \mathscr{B}'_E) \neq I_n$).

Exemple:

Dans \mathbb{R}^2 , $\mathscr{B} = [(1,0),(0,1)]$ et $\mathscr{B}' = [(1,2),(3,1)]$.

$$\operatorname{mat}(\operatorname{Id}_{E}, \mathcal{B}, \mathcal{B}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \operatorname{mat}(\operatorname{Id}_{E}, \mathcal{B}', \mathcal{B}') = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (11.22)

$$\operatorname{mat}(\operatorname{Id}_{E}, \mathscr{B}', \mathscr{B}) = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \qquad \operatorname{mat}(\operatorname{Id}_{E}, \mathscr{B}, \mathscr{B}') = \frac{1}{5} \begin{pmatrix} -1 & 3 \\ 2 & -1 \end{pmatrix}$$
 (11.23)

C) Conséquences : règles de calcul

• Règles habituelles de l'anneau $(\mathcal{M}_n(\mathbb{K}), +, \times),$

du K-ev
$$(\mathcal{M}_n(K), +, \cdot)$$
.

« Les scalaires sortent des produits ».

(C'est-à-dire les règles habituelles d'une K-algèbre)

• Notation habituelle dans un anneau :

Pour
$$A \in \mathcal{M}_n(\mathbb{K}), \begin{cases} A^0 = I_n \\ \forall k \in \mathbb{N}, A^{k+1} = A^k A \end{cases}$$

• Et (toujours dans l'anneau), si $A, B \in \mathcal{M}_n(\mathbb{K})$ sont deux éléments qui commutent, alors :

$$\forall m \in \mathbb{N}, (A+B)^m = \sum_{k=0}^m C_m^k A^k B^{m-k}$$
 (11.24)

et

$$\forall m \in \mathbb{N}^*, A^m - B^m = (A - B) \times (A^{m-1} + A^{m-2}B + \dots + B^{m-1})$$
 (11.25)

Exemple
$$\stackrel{\textbf{.}}{(3)}$$
 3 2 1
Soit $A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{pmatrix}$, calculer A^k .

Première méthode; chercher une récurrence en calculant les premières valeurs, puis la montrer et donner le résultat.

Autre méthode, plus simple; on peut en effet poser B telle que :

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{pmatrix} = 3I_3 + \underbrace{\begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}}_{R}$$
 (11.26)

On a alors :
$$B^0 = I_3$$
, $B^1 = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$, $B^2 = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $B^3 = 0$.

Donc, comme I_3 et B commutent (I_3 commute avec tout le monde), on a :

$$A^{k} = (3I_{3} + B)^{k} = \sum_{p=0}^{k} C_{k}^{p} (3I_{3})^{k-p} B^{p}$$

$$= \sum_{p=0}^{k} C_{k}^{p} 3^{k-p} B^{p}$$

$$(pour $k \ge 2$) = $C_{k}^{0} 3^{k-0} B^{0} + C_{k}^{1} 3^{k-1} B + C_{k}^{2} 3^{k-2} B^{2}$

$$= 3^{k} I_{3} + k 3^{k-1} B + \frac{k(k-1)}{2} 3^{k-2} B^{2}$$

$$(11.27)$$$$

Donc

$$A^{k} = \begin{pmatrix} 3^{k} & 2k3^{k-1} & k3^{k-1} + 2k(k-1)3^{k-2} \\ 0 & 3^{k} & 2k3^{k-1} \\ 0 & 0 & 3^{k} \end{pmatrix}$$
 (11.28)

VII Transposition

A) Définition

Définition:

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, disons $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$.

La transposée de A est la matrice ${}^t\!A \in \mathscr{M}_{p,n}(\mathbb{K})$ définie par ${}^t\!A = (a'_{i,j})_{\substack{1 \leqslant i \leqslant p \\ 1 \leqslant j \leqslant n}}$ où $\forall i \in \llbracket 1, n \rrbracket, \forall j \in \llbracket 1, p \rrbracket, a'_{i,j} = a_{j,i}$.

Exemple:

$$A = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \qquad {}^{t}A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 (11.29)

B) Propriétés

Propriété:

Pour tous $A, A' \in \mathcal{M}_{n,p}(\mathbb{K}), B \in \mathcal{M}_{p,q}(\mathbb{K}), \lambda \in \mathbb{K}$, on a :

- ${}^{t}({}^{t}A) = A$
- $\bullet \ ^t(A+A') = {}^tA + {}^tA'$
- ${}^{t}(\lambda A) = \lambda^{t}A$
- ${}^{t}(AB) = {}^{t}B{}^{t}A$

Démonstration :

Pour les trois premiers, c'est immédiat. Pour le quatrième :

Notons
$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}, B = (b_{i,j})_{\substack{1 \le i \le p \\ 1 \le j \le q}}, AB = (c_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le q}}, {}^tA = (a'_{i,j})_{\substack{1 \le i \le p \\ 1 \le j \le n}}, {}^tB = (b'_{i,j})_{\substack{1 \le i \le q \\ 1 \le j \le p}}, {}^tB^tA = (c'_{i,j})_{\substack{1 \le i \le q \\ 1 \le j \le n}}$$

Pour tous $i \in [1, q], j \in [1, n],$ on a :

$$c'_{i,j} = \sum_{k=1}^{p} b'_{i,k} a'_{k,j} = \sum_{k=1}^{p} b_{k,i} a_{j,k} = \sum_{k=1}^{p} a_{j,k} b_{k,i} = c_{j,i}$$
(11.30)

Donc ${}^{t}(AB) = {}^{t}B{}^{t}A$.

C) Matrices symétriques, antisymétriques

Définition:

Soit $A \in \mathscr{M}_n(\mathbb{K})$.

$$A \text{ est symétrique } \iff \forall i \in [1, n], \forall j \in [1, n], a_{i,j} = a_{j,i} \iff {}^t\!A = A$$
 (11.31)

$$A \text{ est antisymétrique } \iff \forall i \in [\![1,n]\!], \forall j \in [\![1,n]\!], a_{i,j} = -a_{j,i} \iff {}^t A = -A$$
 (11.32)

Exemple:
$$\begin{pmatrix} 1 & 3 & 0 \\ 3 & 2 & 2 \\ 0 & 2 & 0 \end{pmatrix}$$
 est symétrique, $\begin{pmatrix} 0 & -3 & 0 \\ 3 & 0 & 2 \\ 0 & -2 & 0 \end{pmatrix}$ est antisymétrique.

Proposition:

Les ensembles $\mathscr{S}_n(\mathbb{K})$ et $\mathscr{A}_n(\mathbb{K})$ des matrices symétriques et antisymétriques de $\mathscr{M}_n(\mathbb{K})$ forment deux sous-espaces supplémentaires de $\mathscr{M}_n(\mathbb{K})$, de dimensions $\frac{n(n+1)}{2}$ et $\frac{n(n-1)}{2}$.

Démonstration:

Et cette famille est évidemment libre est génératrice.

De même, dim $\mathscr{A}_n(\mathbb{K}) = \frac{n(n-1)}{2}$ (même famille que $\mathscr{S}_n(\mathbb{K})$ en enlevant les n derniers et en remplaçant le 1 « du haut » par -1 dans les autres).

Donc dim $\mathscr{A}_n(\mathbb{K})$ + dim $\mathscr{S}_n(\mathbb{K}) = n^2$.

De plus, si $M \in \mathcal{A}_n(\mathbb{K}) \cap \mathcal{S}_n(\mathbb{K})$, alors évidemment $M = 0_{\mathcal{M}_n(\mathbb{K})}$.

Donc $\mathscr{S}_n(\mathbb{K})$ et $\mathscr{A}_n(\mathbb{K})$ sont en somme directe, et $\mathscr{A}_n(\mathbb{K}) \oplus \mathscr{S}_n(\mathbb{K}) = \mathscr{M}_n(\mathbb{K})$.

VIII Matrices inversibles

A) Définitions – Rappels

Définition:

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

$$A \text{ est inversible } \iff \exists B \in \mathcal{M}_n(\mathbb{K}), AB = BA = I_n$$
 (11.34)

(C'est la définition générale de l'inversibilité pour × dans un anneau).

Proposition:

Si $A \in \mathcal{M}_n(\mathbb{K})$ est inversible, alors il existe un et un seul $B \in \mathcal{M}_n(\mathbb{K})$ tel que $AB = BA = I_n$. Cet élément s'appelle l'inverse de A et est noté A^{-1} . (la démonstration a été faite dans le cas général pour un anneau).

Définition :

L'ensemble des éléments inversibles de $\mathcal{M}_n(\mathbb{K})$ est noté $\mathcal{GL}_n(\mathbb{K})$. Il forme un groupe pour la loi \times . (idem, voir cours sur les anneaux).

Plus précisément :

• $\mathcal{GL}_n(\mathbb{K})$ est stable par \times : Si $A, B \in \mathcal{GL}_n(\mathbb{K})$, alors $AB \in \mathcal{GL}_n(\mathbb{K})$ et $(AB)^{-1} = B^{-1}A^{-1}$.

- Si $A \in \mathcal{GL}_n(K)$, alors $A^{-1} \in \mathcal{GL}_n(K)$ et $(A^{-1})^{-1} = A$.
- $I_n \in \mathcal{GL}_n(K)$

Remarque:

Si AB = BA, alors A et B sont carrées de même type. Le fait d'avoir choisi $\mathcal{M}_n(\mathbb{K})$ pour la définition d'inversibilité n'est donc pas restrictif pour $\mathcal{GL}_n(\mathbb{K})$.

B) Théorème essentiel

Théorème:

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

Soit E un \mathbb{K} -ev de dimension n, muni d'une base \mathscr{B}_E .

Soit E' un \mathbb{K} -ev de dimension n, muni d'une base $\mathscr{B}_{E'}$.

Soit $\varphi \in \mathcal{L}(E, E')$ de matrice A dans les bases \mathscr{B}_E et $\mathscr{B}_{E'}$.

Alors A est inversible si et seulement si φ est bijective. Si c'est le cas, A^{-1} est la matrice de φ^{-1} dans les bases $\mathscr{B}_{E'}$ et \mathscr{B}_{E} .

Démonstration:

• Supposons A inversible : on peut introduire A^{-1} et l'application linéaire $\psi \colon E' \to E$ de matrice A^{-1} dans les bases $\mathscr{B}_{E'}$ et \mathscr{B}_E . Alors $\varphi \circ \psi = \mathrm{Id}_E$ et $\psi \circ \varphi = \mathrm{Id}_{E'}$. En effet :

$$\operatorname{mat}(\varphi \circ \psi, \mathscr{B}_{E'}, \mathscr{B}_{E'}) = \operatorname{mat}(\varphi, \mathscr{B}_{E}, \mathscr{B}_{E'}) \times \operatorname{mat}(\psi, \mathscr{B}_{E'}, \mathscr{B}_{E}) = A \times A^{-1} = I_n, \tag{11.35}$$

et

$$\operatorname{mat}(\psi \circ \varphi, \mathscr{B}_{E}, \mathscr{B}_{E}) = \operatorname{mat}(\psi, \mathscr{B}_{E'}, \mathscr{B}_{E}) \times \operatorname{mat}(\varphi, \mathscr{B}_{E}, \mathscr{B}_{E'}) = A^{-1} \times A = I_{n}$$
(11.36)

Donc φ est bijective et $\varphi^{-1} = \psi$.

• Supposons φ bijective. On introduit φ^{-1} et $B = \text{mat}(\varphi^{-1}, \mathscr{B}_{E'}, \mathscr{B}_{E})$. Alors :

$$A \times B = \max(\varphi, \mathscr{B}_{E}, \mathscr{B}_{E'}) \times \max(\varphi^{-1}, \mathscr{B}_{E'}, \mathscr{B}_{E})$$

$$= \max(\varphi \circ \varphi^{-1}, \mathscr{B}_{E'}, \mathscr{B}_{E'})$$

$$= \max(\mathrm{Id}_{E'}, \mathscr{B}_{E'}, \mathscr{B}_{E'})$$

$$= I_{n}$$

$$(11.37)$$

et

$$B \times A = \operatorname{mat}(\varphi^{-1}, \mathscr{B}_{E'}, \mathscr{B}_{E}) \times \operatorname{mat}(\varphi, \mathscr{B}_{E}, \mathscr{B}_{E'})$$

$$= \operatorname{mat}(\varphi^{-1} \circ \varphi, \mathscr{B}_{E}, \mathscr{B}_{E})$$

$$= \operatorname{mat}(\operatorname{Id}_{E}, \mathscr{B}_{E}, \mathscr{B}_{E})$$

$$= I_{n}$$

$$(11.38)$$

Donc A est inversible et $A^{-1} = B$.

Théorème (Cas particulier):

Soit E un \mathbb{K} -ev de dimension n, muni d'une base \mathscr{B} .

Soit $\varphi \in \mathcal{L}(E)$, $A = \text{mat}(\varphi, \mathcal{B})$.

Alors A est inversible si et seulement si φ est bijective, et dans ce cas $A^{-1} = \max(\varphi^{-1}, \mathcal{B})$.

Conséquence:

Soit E un \mathbb{K} -ev de dimension n, muni d'une base \mathscr{B} .

Alors
$$\phi_{\mathscr{B}} \colon \mathcal{GL}(E) \longrightarrow \mathcal{GL}_n(\mathbb{K})$$
 est un isomorphisme de groupe. $\varphi \longmapsto \operatorname{mat}(\varphi, \mathscr{B})$

C) Exemples

Soit $A = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$. A est-elle inversible, si oui que vaut A^{-1} ?

• première méthode, exclue :

Soit
$$B = \begin{pmatrix} x & z \\ y & t \end{pmatrix}$$
. On a les équivalences :

$$AB = BA = I_n \iff \begin{cases} \text{syst\`eme de 8 \'equations} \\ \text{\`a 4 inconnues} \end{cases}$$
 (11.39)

• deuxième méthode :

Soit φ l'endomorphisme de \mathbb{R}^2 de matrice A dans la base canonique \mathscr{B}_2 . Alors, pour tout $(x,y) \in \mathbb{R}^2$, $\varphi(x,y) = (x-y,2x+y)$. Soit $(a,b) \in \mathbb{R}^2$. On a les équivalences :

$$\varphi(x,y) = (a,b) \iff \begin{cases} x - y = a \\ 2x + y = b \end{cases} \iff \begin{cases} x = \frac{a+b}{3} \\ y = \frac{b-2a}{3} \end{cases}$$
(11.40)

Donc φ est bijective et φ^{-1} a pour matrice $\begin{pmatrix} 1/3 & 1/3 \\ -2/3 & 1/3 \end{pmatrix}$ dans \mathscr{B}_2 .

Donc
$$A^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}$$
.

Autre exemple:

Soit
$$A = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}$$
. Soit $\varphi \in \mathcal{L}(\mathbb{R}^2)$ de matrice A dans la base canonique $\mathscr{B}_2 = (\vec{i}, \vec{j})$.

Alors $\operatorname{Im} \varphi = \operatorname{Vect}(\varphi(\vec{i}), \varphi(\vec{j})) = \operatorname{Vect}((2,1), (4,2)) = \operatorname{Vect}((2,1))$. Donc $\operatorname{Im} \varphi$ est de dimension 1. Donc φ n'est pas de rang 2, donc φ n'est pas bijective, donc A n'est pas inversible.

D) Diverses caractérisations

Ici, $A \in \mathscr{M}_n(\mathbb{K})$.

1) Avec les endomorphismes

Proposition:

Soit E un \mathbb{K} -ev de dimension n, muni d'une base \mathscr{B} .

Soit $\varphi \in \mathcal{L}(E)$ de matrice A dans la base \mathscr{B} .

On a les équivalences :

A est inversible
$$\iff \varphi$$
 est bijective $\iff \varphi$ est injective (11.41)

 $\iff \varphi$ est surjective

2) Avec les colonnes

Proposition:

On a les équivalences :

A est inversible
$$\iff$$
 Ses colonnes forment une base de $\mathcal{M}_{n,1}(\mathbb{K})$
 \iff Ses colonnes forment une famille libre (11.42)
 \iff Ses colonnes forment une famille génératrice de $\mathcal{M}_{n,1}(\mathbb{K})$

Démonstration:

Les deux dernières équivalences viennent du fait que $\mathcal{M}_{n,1}(\mathbb{K})$ est de dimension n.

Concernant la première équivalence :

Soit ϕ l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{K})$ de matrice A dans la base naturelle de $\mathcal{M}_{n,1}(\mathbb{K})$:

$$\begin{pmatrix}
E_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, E_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$
(11.43)

Alors:

A est inversible
$$\iff \phi$$
 est bijective
$$\iff [\phi(E_1), \phi(E_2), \dots \phi(E_n)] \text{ est une base de } \mathcal{M}_{n,1}(\mathbb{K})$$
 (11.44)

Or, pour tout $j \in [1, n]$, $\phi(E_j)$ n'est autre que la j-ème colonne de A, d'où l'équivalence.

Généralisation:

Soit E un \mathbb{K} -ev de dimension n, muni d'une base $\mathscr{B} = (e_1, e_2, \dots e_n)$.

Pour tout $j \in [1, n]$, on note v_j le vecteur de E dont les composantes dans \mathscr{B} sont données par la j-ème colonne de A.

Alors:

$$A$$
 est inversible $\iff [v_1, v_2, \dots v_n]$ est une base de E (11.45)

La démonstration est la même en prenant $\phi \in \mathcal{L}(E)$ de matrice A dans la base \mathscr{B} (puisque $\forall j \in [1, n], v_j = \phi(e_j)$).

Cas particulier:

Si $E = \mathbb{K}^n$ et \mathscr{B} est la base canonique de \mathbb{K}^n . Les v_j sont alors appelés les vecteurs colonnes (c'est-à-dire les colonnes vues comme n-uplets)

3) Avec les systèmes

Proposition: $A \text{ est inversible si et seulement si pour tout } B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{K}) \text{ le système}$

$$AX = B, (S)$$

où $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ est la colonne des inconnues, a une unique solution.

Démonstration:

En effet : (S) traduit l'assertion « ϕ est bijectif, où ϕ est un endomorphisme d'un \mathbb{K} -ev E de matrice Adans une base \mathcal{B} ».

En effet : Si $\phi \in \mathcal{L}(E)$, mat $(\phi, \mathcal{B}) = A$, $\mathcal{B} = (e_1, e_2, \dots e_n)$, alors :

A est inversible
$$\iff \phi$$
 est bijective
$$\iff \forall \vec{b} \in E, \exists! \vec{x} \in E, \phi(\vec{x}) = \vec{b}$$

$$\iff \forall (b_1, b_2, \dots b_n) \in \mathbb{K}^n, \exists! (x_1, x_2, \dots x_n) \in \mathbb{K}^n, \phi(\vec{x}) = \vec{b}$$

$$\iff \forall (b_1, b_2, \dots b_n) \in \mathbb{K}^n, \exists! (x_1, x_2, \dots x_n) \in \mathbb{K}^n, AX = B$$

$$(11.46)$$

Définition:

Un système AX = B où :

$$\begin{cases} A \in \mathcal{GL}_n(\mathbb{K}) \\ B \in \mathcal{M}_{n,1}(\mathbb{K}) \\ X \in \mathcal{M}_{n,1}(\mathbb{K}) \text{ est la colonne des inconnues} \end{cases}$$
(11.47)

est appelé un système de Cramer. Il admet l'unique solution $X = A^{-1}B$.

4) Inversibilité à droite ou à gauche seulement

Théorème:

On a les équivalences :

$$A \text{ est inversible} \iff \exists B \in \mathscr{M}_n(\mathbb{K}), AB = I_n$$
 (11.48)

$$\iff \exists B \in \mathscr{M}_n(\mathbb{K}), BA = I_n$$
 (11.49)

Et dans ces cas là $B = A^{-1}$.

Démonstration:

Déjà, les implications de gauche à droite sont évidentes.

• Pour la première équivalence : Supposons qu'il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que $AB = I_n$ Soit E un \mathbb{K} -ev de dimension n, muni d'une base \mathscr{B} .

Soit $\varphi \in \mathcal{L}(E)$ de matrice A dans la base \mathscr{B} .

Soit $\psi \in \mathcal{L}(E)$ de matrice B dans la base \mathscr{B} .

Alors $\varphi \circ \psi = \mathrm{Id}_E$.

Donc φ est surjective : tout élément v de E s'écrit $\varphi(\psi(v))$. Donc φ est bijective. Donc A est inversible. Et on a $AB = I_n$, donc $A^{-1}AB = A^{-1}$, donc $B = A^{-1}$.

• Pour la deuxième équivalence : on introduit les mêmes éléments.

 $\psi \circ \varphi = \mathrm{Id}_E$. Donc φ est injective :

$$\varphi(x') = \varphi(x) \implies \psi(\varphi(x')) = \psi(\varphi(x)) \implies x' = x$$
 (11.50)

Donc φ est bijective. Donc A est inversible et $B = A^{-1}$.

5) Transposition

Proposition:

On a l'équivalence :

$$A \text{ est inversible} \iff {}^{t}A \text{ est inversible},$$
 (11.51)

et dans ce cas, $({}^{t}A)^{-1} = {}^{t}(A^{-1}).$

Démonstration:

Supposons A inversible : $AA^{-1} = A^{-1}A = I_n$.

Alors:

$${}^{t}(AA^{-1}) = {}^{t}(A^{-1}A) = {}^{t}I_{n} = I_{n}$$
 ; ${}^{t}(A^{-1}){}^{t}A = {}^{t}A^{t}(A^{-1}) = I_{n}$ (11.52)

Donc ${}^{t}A$ est inversible, d'inverse ${}^{t}(A^{-1})$.

Réciproquement, si ${}^{t}A$ est inversible, alors ${}^{t}({}^{t}A)$ est inversible, c'est-à-dire que A est inversible.

Conséquence:

On a les équivalences :

A est inversible \iff Ses lignes forment une base de $\mathcal{M}_{1,n}(\mathbb{K})$

 \iff Ses lignes forment une famille libre

(11.53)

 \iff Ses lignes forment une famille génératrice de $\mathcal{M}_{1,n}(\mathbb{K})$

 \iff la famille de ses vecteurs lignes ($\in \mathbb{K}^n !!$) a les mêmes propriétés...

(Les vecteurs lignes de A sont les vecteurs colonnes de ${}^{t}A$)

E) Exemples importants

1) Les matrices diagonales

On note $\operatorname{Diag}_n(\mathbb{K})$ l'ensemble des matrices diagonales d'ordre n à coefficients dans \mathbb{K} . (attention, ce n'est pas une notation standard!). Alors $\operatorname{Diag}_n(\mathbb{K})$ est une sous algèbre de $\mathscr{M}_n(\mathbb{K})$ (et même commutative).

Proposition:

Soit $A \in \mathrm{Diag}_n(\mathbb{K})$:

$$A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$
 (11.54)

Alors A est inversible si et seulement si $\forall i \in [1, n], \lambda_i \neq 0$, et dans ce cas :

$$A^{-1} = \begin{pmatrix} \lambda_1^{-1} & 0 & \dots & 0 \\ 0 & \lambda_2^{-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n^{-1} \end{pmatrix}$$
 (11.55)

Démonstration:

- Si un des λ_i est nul, la colonne C_i est nulle, donc la famille des colonnes de A n'est pas libre. Donc A n'est pas inversible.
- Si aucun des λ_i n'est nul, on introduit la matrice proposée (on la nomme B), et alors $AB = BA = I_n$. Donc A est inversible et $A^{-1} = B$.

2) Les matrices triangulaires supérieures

On note $TS_n(\mathbb{K})$ l'ensemble des matrices triangulaires supérieures d'ordre n à coefficients dans \mathbb{K} , c'est-à-dire du type $(a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ où $i > j \implies a_{i,j} = 0$. (la notation n'est pas standard non plus) Alors $TS_n(\mathbb{K})$ est une sous algèbre de $\mathcal{M}_n(\mathbb{K})$ (mais non commutative).

Proposition:

Soit $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in TS_n(\mathbb{K}).$

Alors A est inversible si et seulement si ses coefficients diagonaux sont tous non nuls.

Démonstration:

• Si les $a_{i,i}$ sont tous non nuls :

$$A = \begin{pmatrix} * & - & - & - \\ 0 & * & - & - \\ \vdots & \ddots & \ddots & - \\ 0 & \dots & 0 & * \end{pmatrix}$$
 (* désigne un scalaire non nul) (11.56)

Alors la famille de ses colonnes $(C_1, C_2 \dots C_n)$ est libre :

Si $\lambda_1 C_1 + \lambda_2 C_2 + \cdots + \lambda_n C_n = 0$, alors, avec le dernier coefficient, $\lambda_n a_{n,n} = 0$. Donc $\lambda_n = 0$ (car $a_{n,n} \neq 0$), et ainsi de suite...

• Si l'un des $a_{i,i}$ est nul : $C_1, C_2 \dots C_i$ sont i éléments d'un ensemble de dimension i-1, à savoir

l'ensemble des colonnes du type $\begin{pmatrix} x_1 \\ \vdots \\ x_{i-1} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \text{ (qui est Vect}(E_1,E_2,\dots E_{i-1}), \text{ où } (E_1,E_2,\dots E_n) \text{ est la}$

base naturelle de $\mathcal{M}_{n,1}(\mathbb{K})$).

Donc $(C_1, C_2 \dots C_i)$ est liée. Donc A n'est pas inversible.

D'où l'équivalence.

Remarque:

On peut montrer que si une matrice triangulaire supérieure est inversible, alors l'inverse de cette matrice est aussi triangulaire supérieure.

3) Matrice triangulaire inférieure

On a le même résultat que pour les matrices triangulaires supérieures, avec la même démonstration (ou en remarquant que A est triangulaire supérieure si et seulement si tA est triangulaire inférieure...)

$$\text{Conséquence}: \\ \text{Un système carré (c'est-à-dire du type } A \times \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}, \text{ où } \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ est la colonne des inconnues) qui }$$

est triangulaire (c'est-à-dire que A est triangulaire) sans 0 sur la diagonale est de Cramer (c'est-à-dire qu'il admet une et une seule solution)

Exemple:

On considère le système suivant :

$$\begin{cases}
\lambda_1 x_1 + \cdots + \cdots = b_1 \\
\lambda_2 x_2 + \cdots = b_2 \\
\vdots \\
\lambda_n x_n = b_n
\end{cases}$$
(S)

Alors:

- Le système admet une et une seule solution lorsque les coefficients diagonaux sont tous non nuls.
- Si l'un des λ_i est nul, le système n'a pas une et une seule solution.

Démonstration (de la conséquence, en utilisant la notation de l'exemple) :

Supposons l'un des λ_i nul. On note $k = \min\{i \in [1, n], \lambda_i = 0\}$.

- Si k = n (c'est-à-dire $\lambda_n = 0$ et $\forall i < n, \lambda_i \neq 0$), alors :
 - \diamond Soit $b_n \neq 0$ et le système est incompatible.
 - \diamond Soit $b_n = 0$, alors on voit qu'on peut fixer x_n quelconque et obtenir une solution $(x_1, x_2 \dots x_n)$ à (S) en résolvant le système (S') composé des n-1 premières équations et considéré comme d'inconnues $x_1, x_2 \dots x_{n-1}$ (qui a une unique solution puisque triangulaire sans 0 sur la diagonale). Donc (S) a une infinité de solutions (avec un degré de liberté).
- Sinon, soit (S'') le système « sous » (strictement) la k-ième équation, en tant que d'inconnues $x_{k+1}, x_{k+2} \dots x_n$.

- \diamond Si (S'') est incompatible, alors (S) l'est aussi.
- \diamond Si (S'') est compatible :
 - Si aucune des solutions de (S'') ne satisfait la k-ième ligne, alors (S) est incompatible.
 - Sinon, l'une au moins, $(x_{k+1}, x_{k+2} \dots x_n)$ par exemple, des solutions de (S'') satisfait la kième ligne : on peut alors fixer arbitrairement x_k et obtenir une solution $(x_1, x_2, \dots x_k, x_{k+1} \dots x_n)$ en résolvant le système (S''') au-dessus (strictement) de la k-ième ligne, qui est de Cramer
 en tant que d'inconnues $x_1, x_2, \dots x_k$. Donc (S) a une infinité de solutions (avec au moins
 un degré de liberté)

Démonstration (Autre argument):

On considère le système plus générique

$$AX = B, \qquad A \in \mathcal{M}_n(\mathbb{K}), \qquad X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \qquad B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$
 (11.57)

On va voir plus généralement que si $A \notin \mathcal{GL}_n(\mathbb{K})$, alors soit (11.57) n'a pas de solution, soit il en a une infinité (pour \mathbb{K} infini seulement). En effet :

- Si (11.57) n'a pas de solution, alors il n'a pas de solution...!
- Sinon, il admet une solution X₀. Montrons alors qu'il en a d'autres :
 A n'est pas inversible. Soit φ l'endomorphisme canoniquement associé à A. Donc φ n'est pas injectif.
 Donc ker φ ≠ {0}. Donc l'équation AX = 0_{Mn(K)} a des solutions autres que 0. Alors les X₀ + λU,
 où U est une solution non nulle de AX = 0_{Mn(K)} et λ ∈ K sont des solutions de (11.57). En effet :
 A × (X₀ + λU) = A × X₀ + λAU = B + 0 = B.

IX Changement de base

A) Changement de base : matrice de passage, composantes d'un vecteur

E est ici un \mathbb{K} -ev de dimension n.

Soit $\mathscr{B} = (e_1, e_2 \dots e_n)$ une base de E (« ancienne »). Soit $\mathscr{B}' = (e'_1, e'_2 \dots e'_n)$ une autre base de E (« nouvelle »).

On suppose qu'on connaît les composantes des e'_j dans la base \mathscr{B} . (d'où le nom d'ancienne et de nouvelle). Alors la matrice qui donne, par colonne, les composantes des vecteurs de \mathscr{B}' dans la base \mathscr{B} s'appelle la matrice de passage de \mathscr{B} à \mathscr{B}' .

Ainsi:

$$P = \text{la matrice de passage de } \mathcal{B} \text{ à } \mathcal{B}'.$$

$$= \text{la matrice des } (a_{i,j}) \text{ de sorte que } \forall j \in [1, n], e'_j = \sum_{i=1}^n a_{i,j} e_i$$

$$\tag{11.58}$$

notée $mat(\mathcal{B}',\mathcal{B})$ (matrice de la famille \mathcal{B}' dans la base \mathcal{B})

Proposition:

On a:

$$P = \max(\mathrm{Id}_E, \mathscr{B}', \mathscr{B}) \tag{11.59}$$

(attention, la base de départ est \mathscr{B}')

Conséquence:

Si P est la matrice de passage de \mathscr{B} à \mathscr{B}' , alors P est inversible, et P^{-1} est la matrice de passage de \mathscr{B}' à \mathscr{B} .

En effet : On a $\mathrm{Id}_E \in \mathcal{GL}(E)$. Donc $\mathrm{mat}(\mathrm{Id}_E, \mathscr{B}', \mathscr{B})$ est inversible, d'inverse $\mathrm{mat}(\mathrm{Id}_E^{-1}, \mathscr{B}, \mathscr{B}') = \mathrm{mat}(\mathrm{Id}_E, \mathscr{B}, \mathscr{B}')$ qui est la matrice de passage de \mathscr{B}' à \mathscr{B} .

Remarque:

Si \mathscr{B} est une base de E et \mathscr{F} une famille de n vecteurs de E, alors \mathscr{F} est une base de E si et seulement si la matrice qui donne par colonne les composantes des vecteurs de \mathscr{F} dans la base \mathscr{B} est inversible.

Théorème:

Soit \mathscr{B} une base de E, \mathscr{B}' une autre base de E.

Soit P la matrice de passage de \mathscr{B} à \mathscr{B}' .

Soit $u \in E$, et X la colonne de ses composantes dans \mathscr{B} , X' celle de ses composantes dans \mathscr{B}' .

Alors X = PX' (on obtient les anciennes en fonction des nouvelles)

Démonstration:

On a u = u donc $u = \mathrm{Id}_E(u)$, c'est-à-dire X = PX' (la base de départ est \mathscr{B}' pour $\mathrm{Id}_E!$)

Démonstration (variante):

On note

$$P = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}, \qquad X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \qquad X' = \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$$
(11.60)

On a:

$$u = \sum_{i=1}^{n} x_{j}' e_{j}' = \sum_{i=1}^{n} x_{j}' \left(\sum_{i=1}^{n} a_{i,j} e_{i} \right) = \sum_{i=1}^{n} \left(\sum_{i=1}^{n} a_{i,j} x_{j}' \right) e_{i}$$
(11.61)

et

$$u = \sum_{i=1}^{n} x_i e_i \tag{11.62}$$

Donc
$$\forall i \in [1, n], x_i = \sum_{j=1}^n a_{i,j} x_j'$$
. Donc $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = P \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}$

Exemple:

Dans \mathbb{R}^2 muni de sa base canonique $\mathscr{B} = (\vec{i}, \vec{j})$.

Soit \mathscr{C} la courbe d'équation :

$$2x^2 + 5y^2 - 2xy = 9 (E)$$

dans \mathscr{B} (C'est-à-dire que \mathscr{C} est l'ensemble des éléments de \mathbb{R}^2 dont les composantes (x,y) dans \mathscr{B} vérifient (E).

Soit $\vec{I} = 2\vec{i} + \vec{j}$, $\vec{J} = \vec{i} - \vec{j}$ alors $\mathscr{B}' = (\vec{I}, \vec{J})$ est une nouvelle base de \mathbb{R}^2 . On cherche l'équation de \mathscr{C} dans \mathscr{B}' .

Matrice de passage de \mathscr{B} à \mathscr{B}' : $\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$.

Soit $u \in \mathbb{R}^2$, de composantes $\begin{pmatrix} x \\ y \end{pmatrix}$ dans \mathscr{B} et $\begin{pmatrix} x' \\ y' \end{pmatrix}$ dans \mathscr{B}' .

Alors
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

On a les équivalences

$$u \in \mathscr{C} \iff 2x^{2} + 5y^{2} - 2xy = 9$$

$$\iff 2(2x' + y')^{2} + 5(x' - y')^{2} - 2(2x' + y')(x' - y') = 9$$

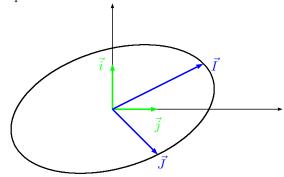
$$\iff 8x'^{2} + 8x'y' + 2y'^{2} + 5x'^{2} - 10x'y' + 5y'^{2} - 4x'^{2} + 2y'^{2} + 2x'y' = 9$$

$$\iff 9x'^{2} + 9y'^{2} = 9$$

$$\iff x'^{2} + y'^{2} = 1$$

$$(11.63)$$

Aspect:



B) Les formules de changement de base pour une application linéaire

Théorème:

Soit E un \mathbb{K} -ev de dimension p, et \mathscr{B}_E , \mathscr{B}_E' deux bases de E. Soit P la matrice de passage de \mathscr{B}_E à \mathscr{B}_E' .

Soit F un \mathbb{K} -ev de dimension n, et \mathscr{B}_F , \mathscr{B}'_F deux bases de F. Soit Q la matrice de passage de \mathscr{B}_F à \mathscr{B}'_F .

Soit $\varphi \in \mathcal{L}(E, F)$, soit $A = \max(\varphi, \mathcal{B}_E, \mathcal{B}_F)$, $A' = \max(\varphi, \mathcal{B}'_E, \mathcal{B}'_F)$.

Alors $A' = Q^{-1}AP$

Démonstration:

On a

$$\varphi = \operatorname{Id}_F \circ \varphi \circ \operatorname{Id}_E \tag{11.64}$$

Donc

$$\operatorname{mat}(\varphi, \mathscr{B}'_{E}, \mathscr{B}'_{F}) = \operatorname{mat}(\operatorname{Id}_{F}, \mathscr{B}_{F}, \mathscr{B}'_{F}) \times \operatorname{mat}(\varphi, \mathscr{B}_{E}, \mathscr{B}_{F}) \times \operatorname{mat}(\operatorname{Id}_{E}, \mathscr{B}'_{E}, \mathscr{B}_{E})$$
(11.65)

Soit $A' = Q^{-1}AP$

Démonstration (variante):

Pour tout vecteur colonne X', on note X = PX', Y = AX, Y' = A'X'. Alors Y = QY', donc QY' = AX'APX'. Donc $Y' = Q^{-1}APX'$. Or, Y' = A'X'. Donc $A'X' = Q^{-1}APX'$. D'où $A' = Q^{-1}AP$.

Cas particulier:

Soient $\varphi \in \mathcal{L}(E)$, \mathscr{B} et \mathscr{B}' deux bases de E, et P la matrice de passage de \mathscr{B} à \mathscr{B}' .

Soient $A = mat(\varphi, \mathcal{B}), A' = mat(\varphi, \mathcal{B}').$

Alors $A' = P^{-1}AP$.

X Matrices équivalentes et rang

A) Rang d'une matrice

Définition:

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

$$rg(A) = le rang de la famille de ses colonnes.$$
 (11.66)

Proposition:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathscr{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathscr{B}_F .

Soit $\varphi \in \mathcal{L}(E, F)$ de matrice A dans les bases \mathscr{B}_E et \mathscr{B}_F .

Soit $(v_1, v_2, \dots v_p)$ une famille de vecteurs de F dont les composantes dans \mathscr{B}_F sont les colonnes de A.

Alors $\operatorname{rg}(A) = \operatorname{rg}(v_1, v_2, \dots v_p) = \operatorname{rg}(\varphi)$.

Démonstration:

On a l'isomorphisme ϕ de $\mathcal{M}_{n,1}(\mathbb{K})$ dans F qui envoie la base naturelle $(E_1, E_2, \dots E_n)$ de $\mathcal{M}_{n,1}(\mathbb{K})$ sur \mathscr{B}_F .

C'est-à-dire : $\phi : \mathcal{M}_{n,1}(\mathbb{K}) \longrightarrow$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \longmapsto \sum_{i=1}^n x_i f_i$$

Alors les v_j ne sont autres que les $\phi(C_j)$ (où $C_1, C_2, \dots C_p$ sont les colonnes de A).

Or, ϕ conserve le rang (c'est un isomorphisme).

Donc $\operatorname{rg}(A) = \operatorname{rg}(C_1, C_2, \dots C_p) = \operatorname{rg}(v_1, v_2, \dots v_p).$ Or, les v_j sont les $\varphi(e_j)$, et on sait que $\operatorname{rg}(\varphi) = \operatorname{rg}(\varphi(e_1), \varphi(e_2), \dots \varphi(e_p)).$

Donc $\operatorname{rg}(A) = \operatorname{rg}(v_1, v_2, \dots v_p) = \operatorname{rg}(\varphi)$.

Conséquence:

- Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et si $r = \operatorname{rg}(A)$, alors $r \leq n$ (rang d'une famille de vecteurs dans un espace de dimension n) et $r \leq p$ (rang de p vecteurs).
- A est inversible si et seulement si r = n = p.
- A est nulle si et seulement si r=0.

B) Matrice équivalente

Définition:

Soient $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$. On dit que B est équivalente à A lorsqu'il existe $P \in \mathcal{GL}_p(\mathbb{K})$ et $Q \in \mathcal{GL}_n(\mathbb{K})$ telles que $B = Q^{-1}AP$.

Remarque:

Le $^{-1}$ n'est que décoratif : si Q est dans $\mathcal{GL}_n(\mathbb{K})$, alors $Q'=Q^{-1}$ y est aussi

Proposition:

Soient $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$.

Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathscr{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathscr{B}_F .

Soit $\varphi \in \mathcal{L}(E, F)$ de matrice A dans les bases \mathcal{B}_E et \mathcal{B}_F .

Alors B est équivalente à A si et seulement si il existe une base \mathscr{B}'_E de E et \mathscr{B}'_F de F telles que B soit la matrice de φ dans les bases \mathscr{B}'_E et \mathscr{B}'_F .

En résumé, une matrice B est équivalente à A si et seulement si elles représentent la même application linéaire dans des bases différentes.

Démonstration:

Si on trouve \mathscr{B}'_E et \mathscr{B}'_F telles que $B = \operatorname{mat}(\varphi, \mathscr{B}'_E, \mathscr{B}'_F)$, alors $B = Q^{-1}AP$ où Q est la matrice de passage de \mathscr{B}_F à \mathscr{B}'_F et P la matrice de passage de \mathscr{B}_E à \mathscr{B}'_E .

Inversement : si $B = Q^{-1}AP$, on peut introduire une base \mathscr{B}'_E de E telle que P soit la matrice de passage de \mathscr{B}_E à \mathscr{B}'_E , et une base \mathscr{B}'_F de F telle que Q soit la matrice de passage de \mathscr{B}_F à \mathscr{B}'_F . Ainsi, $B = \text{mat}(\varphi, \mathscr{B}'_E, \mathscr{B}'_F)$.

Proposition:

La relation « être équivalente à » sur $\mathcal{M}_{n,p}(\mathbb{K})$ est une relation d'équivalence, c'est-à-dire réflexive, transitive et symétrique :

Réflexive : $A = I_n^{-1} A I_n$

Symétrique : Si $B = Q^{-1}AP$, alors $A = QBP^{-1} = (Q^{-1})^{-1}B(P^{-1})$

Transitive : Si $B = Q^{-1}AP$ et $C = R^{-1}BS$, alors $C = R^{-1}BS = R^{-1}(Q^{-1}AP)S = (R^{-1}Q^{-1})A(PS) = (QR)^{-1}A(PS)$

C) Théorème

Théorème :

Soient $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$.

A et B sont équivalentes si et seulement si rg(A) = rg(B).

Démonstration:

1. Si A et B sont équivalentes : Soit E un K-ev de dimension p, muni d'une base \mathscr{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathscr{B}_F .

Soit $\varphi \in \mathcal{L}(E, F)$ de matrice A dans les bases \mathcal{B}_E et \mathcal{B}_F .

Donc il existe une base \mathscr{B}'_E de E et \mathscr{B}'_F de F telles que B soit la matrice de φ dans les bases \mathscr{B}'_E et \mathscr{B}'_F .

C'est-à-dire : $A = \max(\varphi, \mathscr{B}_E, \mathscr{B}_F)$ et $B = \max(\varphi, \mathscr{B}'_E, \mathscr{B}'_F)$.

Donc $rg(A) = rg(\varphi) = rg(B)$.

2. Supposons inversement que rg(A) = rg(B) = r.

Lemme:

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, notons r = rg(A). On va montrer que A est équivalente à :

$$(\underbrace{0 \dots \dots \dots 0}_{r})$$

$$\underbrace{\sum_{r}}_{p}$$
C'est-à-dire $J_{n,p,r} = (\gamma_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$ où $\gamma_{i,j} = \begin{cases} 1 & \text{si } i = j \leqslant r \\ 0 & \text{si } i \neq j \text{ ou } (i = j \text{ et } i > r) \end{cases}$

Démonstration (du lemme):

Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathscr{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathscr{B}_F .

Soit $\varphi \in \mathcal{L}(E, F)$ de matrice A dans les bases \mathscr{B}_E et \mathscr{B}_F .

Alors $rg(\varphi) = r$. Donc $\dim(\ker \varphi) = p - r$. Soit $(u_{r+1}, \dots u_p)$ une base de $\ker \varphi$.

Soit G un supplémentaire de $\ker \varphi$ dans E.

Donc $\dim(G) = r$. Soit $(u_1, \dots u_r)$ une base de G.

Alors $B'_E = (u_1, \dots u_r, u_{r+1}, \dots u_p)$ est une base de E.

Soient $v_1, \ldots v_r$ les images par φ de $u_1, \ldots u_r$.

Alors $(v_1, \ldots v_r)$ est libre. En effet :

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_r v_r = 0 \implies \varphi(\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_r u_r) = 0$$

$$\implies \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_r u_r \in \ker \varphi \cap G$$

$$\implies \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_r u_r = 0$$

$$\implies \forall i \in [1, r], \alpha_i = 0$$

$$(11.68)$$

On complète alors cette famille en une base de $F: \mathscr{B}'_F = (v_1, \dots v_n)$.

Ainsi, par construction : $J_{n,p,r} = \max(\varphi, \mathscr{B}'_E, \mathscr{B}'_F)$.

Donc A est équivalente à $J_{n,p,r}$.

D'où, pour la démonstration du théorème : A et B sont toutes les deux de rang r, donc équivalentes à $J_{n,p,r}$. Donc A et B sont équivalentes.

Théorème:

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. Alors $\operatorname{rg}(A) = \operatorname{rg}({}^{t}A)$.

Démonstration:

Notons $r = \operatorname{rg}(A)$. Alors, comme $J_{n,p,r}$ est de rang r, A est équivalente à $J_{n,p,r}$. Il existe donc $P \in \mathcal{GL}_p(\mathbb{K})$ et $Q \in \mathcal{GL}_n(\mathbb{K})$ tels que $A = Q^{-1}J_{n,p,r}P$.

Donc ${}^{t}A = {}^{t}P^{t}J_{n,p,r}{}^{t}(Q^{-1}).$

Or,
$${}^t\!P \in \mathcal{GL}_p(\mathbb{K})$$
, ${}^t\!(Q^{-1}) = ({}^t\!Q)^{-1}$ et ${}^t\!Q \in \mathcal{GL}_n(\mathbb{K})$ et ${}^t\!J_{n,p,r} = J_{p,n,r}$ (qui est de rang r).

Donc ${}^{t}A$ est équivalente à une matrice de rang r. donc $\operatorname{rg}({}^{t}A) = r$.

Donc $\operatorname{rg}(A) = \operatorname{rg}({}^{t}A)$.

Ainsi, le rang d'une matrice est aussi le rang de la famille de ses lignes.

Exemple (Recherche pratique du rang):

On considère la matrice

$$A = \begin{pmatrix} 1 & 2 & 3 & -1 & 0 \\ 2 & 1 & 2 & 1 & 0 \\ 3 & 0 & 0 & 1 & 3 \\ 4 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 (11.69)

Quel est le rang de A?

Remarque:

On a vu que, étant donnés $(v_1, \ldots v_n)$ vecteurs d'un K-ev E, les modifications du type

$$v_i \leftarrow \lambda v_i \text{ avec } \lambda \neq 0$$
 (11.70)

$$v_i \leftarrow v_i + \alpha v_j \text{ avec } i \neq j$$
 (11.71)

$$v_i \leftrightarrow v_j \tag{11.72}$$

ne modifient pas $\operatorname{Vect}(v_1, \dots v_n)$ et par conséquent le rang. On va utiliser cette remarque sachant que le rang d'une matrice est celui de ses colonnes, mais aussi celui de ses lignes.

Ainsi:

$$\operatorname{rg}(A) \underset{L_{4} \leftarrow L_{4} - 4L_{5}}{=} \operatorname{rg} \begin{pmatrix} 0 & 2 & 3 & -1 & -1 \\ 0 & 1 & 2 & 1 & -2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & -3 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} \underset{L_{2} \leftrightarrow L_{4}}{=} \operatorname{rg} \begin{pmatrix} 0 & 2 & 3 & -1 & -1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & -2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \underset{L_{1} \leftarrow L_{1} - 2L_{4}}{=} \operatorname{rg} \begin{pmatrix} 0 & 0 & -1 & -3 & -3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & -2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} = \underset{L_{1} \leftarrow L_{1} - L_{2}}{=} \operatorname{rg} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & -1 & -3 & 3 \\ 0 & 1 & 2 & 1 & -2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \underset{L_{1} \leftarrow L_{1} - L_{2}}{=} \operatorname{rg} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & -1 & -3 & 3 \\ 0 & 1 & 2 & 1 & -2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \underset{L_{1} \leftarrow L_{1} - L_{2}}{=} \operatorname{rg} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & -1 & -3 & 3 \\ 0 & 1 & 2 & 1 & -2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \underset{L_{1} \leftarrow L_{1} - L_{2}}{=} \operatorname{rg} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 1 & 2 & 1 & -2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

XI Transformations élémentaires

A) Sur les colonnes

Définition:

On note C_p l'ensemble des matrices à p colonnes. Une transformation élémentaire T_C sur les colonnes d'une matrice à p colonnes est une application $T_C\colon C_p \longrightarrow C_p$ où A' est déduite de A par l'une $A \longmapsto A'$ des opérations suivantes :

- $c_i \leftarrow \lambda c_i \text{ avec } \lambda \neq 0$
- $c_i \leftarrow c_i + \alpha c_j \text{ avec } i \neq j$
- $c_i \leftrightarrow c_j$

Théorème:

Soit T_C une transformation élémentaire sur les colonnes d'une matrice à p colonnes. Alors il existe une et une seule matrice $P \in \mathcal{GL}_p(\mathbb{K})$ telle que $\forall A \in C_p, T_C(A) = A \times P$

Démonstration:

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

Soit E un \mathbb{K} -ev de dimension p, muni d'une base $\mathscr{B}_E = (e_1, e_2, \dots e_p)$.

Soit F un \mathbb{K} -ev de dimension n, muni d'une base $\mathscr{B}_F = (f_1, f_2, \dots f_n)$.

Soit $\varphi \in \mathcal{L}(E, F)$ tel que $A = \text{mat}(\varphi, \mathcal{B}_E, \mathcal{B}_F)$.

Soit $A' = T_C(A)$.

Si T_C est la transformation c_i ← λc_i avec λ ≠ 0,
on voit alors que A' = mat(φ, B'_E, B_F) où B'_E = (e₁, e₂, ... λe_i ... e_p).
Selon les formules de changement de base, A' = I_n⁻¹AP = AP, où P est la matrice de passage de B_E à B'_E, c'est-à-dire

$$P = i \rightarrow \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \lambda & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix} = I_p + (\lambda - 1)E_{i,i}$$

$$(11.74)$$

• Si T_C est la transformation $c_i \leftarrow c_i + \alpha c_j$ avec $i \neq j$, alors, de même, $A' = \max(\varphi, \mathcal{B}'_E, \mathcal{B}_F)$ avec $\mathcal{B}'_E = (e_1, e_2, \dots e_i + \alpha e_j \dots e_p)$. $A' = I_n^{-1}AP = AP$ où

$$P = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \alpha & \vdots \\ \vdots & \ddots & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix} = I_{p} + \alpha E_{j,i}$$
(11.75)

• Si T_C est la transformation $c_i \leftrightarrow c_j$, $A' = \max(\varphi, \mathscr{B}'_E, \mathscr{B}_F)$ avec $\mathscr{B}'_E = (e_1, e_2, \dots e_j \dots e_i \dots e_p)$. $A' = I_n^{-1}AP = AP$ où

$$P = \stackrel{i \to}{\underset{j \to}{}} \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & 0 & 0 & \ddots & 1 & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & 1 & \ddots & 0 & 0 \\ 0 & \dots & \dots & \dots & 0 & 1 \end{pmatrix} = I_{p} - E_{j,j} - E_{i,i} + E_{j,i} + E_{i,j}$$

$$(11.76)$$

D'où l'existence.

Unicité : Si P convient, on a nécessairement : $T_C(I_p) = I_p P = P$. Donc P est l'image de l'identité.

B) Transformation élémentaire sur les lignes

Définition:

Soit L_n l'ensemble des matrices à n lignes. Une transformation élémentaire T_L sur les lignes d'une matrice à n lignes est une application $T_L \colon L_n \longrightarrow L_n$ où A' est déduite de A par l'une des $A \longmapsto A'$ transformations suivantes :

- $l_i \leftarrow \lambda l_i \text{ avec } \lambda \neq 0$
- $l_i \leftarrow l_i + \alpha l_j$ avec $i \neq j$
- $l_i \leftrightarrow l_j$

Théorème:

Soit T_L une transformation élémentaire sur les lignes des matrices à n lignes. Alors il existe une et une seule matrice $Q \in \mathcal{GL}_n(\mathbb{K})$ telle que $\forall A \in L_n, T_L(A) = Q \times A$.

Démonstration:

On peut refaire la même démonstration que précédemment (attention, c'est \mathscr{B}_F qui sera alors changé), ou alors :

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, on note $A' = T_L(A)$. Alors il est évident que ${}^tA'$ est obtenue à partir de tA par une transformation élémentaire sur les colonnes (correspondant à T_L). Donc il existe $P \in \mathcal{GL}_n(\mathbb{K})$ tel que ${}^tA' = ({}^tA) \times P$. Donc $A' = \underbrace{{}^tP}_{\in \mathcal{GL}_n(\mathbb{K})} \times A$.

Remarque:

Si $\forall A \in L_n, T_L(A) = Q \times A$, alors $Q = T_L(I_n)$.

C) Intérêt de ces théorèmes

• On retrouve le fait qu'une transformation élémentaire sur les lignes/colonnes d'une matrice conserve son rang. En effet, une matrice A sera changée, par succession de transformations, en A'

 $\underbrace{Q_l\dots Q_1}_{\in\mathcal{GL}_n(\mathbb{K})}A\underbrace{P_1\dots P_k}_{\in\mathcal{GL}_p(\mathbb{K})}$ donc A' est équivalente à A, donc de même rang.

• On voit ce qui se passe quand on fait des transformations élémentaires sur les lignes d'un système : On considère le système

$$AX = B, \quad A = (a_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}} \in \mathcal{M}_{n,p}(\mathbb{K}), \quad B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{K}), \quad X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in \mathcal{M}_{p,1}(\mathbb{K}) \quad (S)$$

(A:« matrice du système », B:« matrice du 2^{nd} membre »)

Alors

(S):
$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p &= b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,p}x_p &= b_2 \\ & \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,p}x_p &= b_n \end{cases}$$
(11.77)

Faire une transformation élémentaire sur les lignes, c'est simplement écrire :

 $AX = B \iff A'X = B'$, où A' et B' sont déduites de A et B par une même transformation T_L sur les lignes. Autrement dit, c'est écrire $AX = B \iff QAX = QB$ où $Q \in \mathcal{GL}_n(\mathbb{K})$.

Transformation sur les colonnes d'un système : déconseillée. Exemple :

$$\begin{cases} 2x + y + z &= a \\ 2x - y &= b \\ 5x &= c \end{cases}, A = \begin{pmatrix} 2 & 1 & 1 \\ 2 & -1 & 0 \\ 5 & 0 & 0 \end{pmatrix}, A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$\iff \begin{cases} z + y + 2x &= a \\ -y + 2x &= b \\ 5x &= c \end{cases}, A' = \begin{pmatrix} 1 & 1 & 2 \\ 0 & -1 & 2 \\ 0 & 0 & 5 \end{pmatrix}, A' \begin{pmatrix} z \\ y \\ x \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$(11.78)$$

On a juste échangé deux inconnues.

XII Retour à la méthode du pivot

A) Cas des matrices inversibles

Proposition:

Soit $A \in \mathcal{GL}_n(\mathbb{K})$. Alors il existe une suite de transformations élémentaires sur les lignes qui conduit à I_n .

Exemple:

$$A = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 5 & 2 \\ 3 & 6 & 0 \end{pmatrix} \xrightarrow{L_2 \leftarrow L_2 - 2L_1 \atop L_3 \leftarrow L_3 - 3L_1} A_1 = \begin{pmatrix} 1 & 4 & 3 \\ 0 & -3 & -4 \\ 3 & -6 & -9 \end{pmatrix} \xrightarrow{L_3 \leftarrow L_3 - 2L_2} A_2 = \begin{pmatrix} 1 & 4 & 3 \\ 0 & -3 & -4 \\ 0 & 0 & -1 \end{pmatrix}$$
(11.79)

On voit ici que A est inversible car $\operatorname{rg}(A)=\operatorname{rg}(A_1)=\operatorname{rg}(A_2)=3.$ On continue :

$$A_{2} = \begin{pmatrix} 1 & 4 & 3 \\ 0 & -3 & -4 \\ 0 & 0 & -1 \end{pmatrix} \xrightarrow{L_{2} \leftarrow L_{2} - 4L_{3}} \begin{pmatrix} 1 & 4 & 0 \\ 0 & -3 & 0 \\ L_{1} \leftarrow L_{1} - L_{3} \end{pmatrix} \xrightarrow{L_{2} \leftarrow -\frac{1}{3}L_{2}} \begin{pmatrix} 1 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{L_{1} \leftarrow L_{1} - 4L_{2}} I_{3} \quad (11.80)$$

Exemple:

$$A = \begin{pmatrix} 2 & 3 & 4 \\ 4 & 6 & 7 \\ -2 & -2 & -1 \end{pmatrix} \xrightarrow{L_{2} \leftarrow L_{2} - 2L_{1} \atop L_{3} \leftarrow L_{3} + L_{1}} \begin{pmatrix} 2 & 3 & 4 \\ 0 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} \xrightarrow{L_{2} \leftrightarrow L_{3}} \begin{pmatrix} 2 & 3 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\downarrow L_{3} \leftrightarrow -L_{3} \begin{pmatrix} 2 & 3 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{L_{1} \leftarrow L_{1} - 4L_{3} \atop L_{2} \leftarrow L_{2} - 3L_{3}} \begin{pmatrix} 2 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{L_{1} \leftarrow L_{1} - 3L_{2} \atop L_{1} \leftarrow \frac{1}{2}L_{1}} I_{3}$$

$$\downarrow L_{1} \leftarrow L_{1} - 3L_{2} \downarrow L_{1} \leftarrow \frac{1}{2}L_{1}$$

$$\downarrow L_{1} \leftarrow L_{1} - 3L_{2} \downarrow L_{1} \leftarrow \frac{1}{2}L_{1}$$

$$\downarrow L_{1} \leftarrow L_{1} - 3L_{2} \downarrow L_{1} \leftarrow \frac{1}{2}L_{1}$$

$$\downarrow L_{1} \leftarrow L_{1} - 3L_{2} \downarrow L_{1} \leftarrow \frac{1}{2}L_{1}$$

Démonstration (par récurrence) :

Pour n = 1, ok.

Soit $n \ge 2$. Supposons que pour toute matrice $A \in \mathcal{GL}_{n-1}(\mathbb{K})$, il existe une succession de transformations élémentaires sur les lignes qui conduit à I_{n-1} .

Soit alors $A=(a_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant n}}\in\mathcal{GL}_n(\mathbb{K})$ (On note L_i ses lignes). Alors l'un des $a_{i,1}$ est non nul (car $A\in\mathcal{GL}_n(\mathbb{K})$). Un éventuel échange de lignes ramène au cas $a_{1,1}\neq 0$. Puis les transformations $L_i \leftarrow L_i - \frac{a_{i,1}}{a_{1,1}} L_1$ pour $i \in [2, n]$ amènent à :

$$\begin{pmatrix}
 a_{1,1} & a_{1,2} & \dots & a_{1,n} \\
\hline
0 & & & & \\
\vdots & & B & & \\
0 & & & & \\
\end{pmatrix}$$
(11.82)

Alors B est inversible : ses lignes forment une famille libre car sinon il existerait un (n-1)-uplet $(\lambda_2,\ldots\lambda_n)\neq (0,\ldots 0)$ tel que $\sum_{i=2}^n\lambda_il_i=0$ (où l_i est la (i-1)-ème ligne de B), et on aurait aussi $\sum_{i=2}^{n} \lambda_i L_i = 0.$

De plus, les transformations sur les lignes de B reviennent aux mêmes transformations sur les L_i $(i \ge 2)$, et amènent par hypothèse de récurrence à :

$$\begin{pmatrix}
 a_{1,1} & a_{1,2} & \dots & a_{1,n} \\
 0 & & & & \\
 \vdots & & I_{n-1} & & \\
 0 & & & & \\
 \end{array}$$
(11.83)

Ensuite, les transformations $L_1 \leftarrow L_1 - a_{1,j}L_j$ pour $j \ge 2$, puis la transformation $L_1 \leftarrow \frac{1}{a_{1,1}}L_1$ amènent à I_n .

Application:

On a une nouvelle présentation pour calculer l'inverse d'une matrice A inversible.

Exemple:

On considère la matrice

$$A = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 5 & 2 \\ 3 & 6 & 0 \end{pmatrix} \tag{11.84}$$

1ère méthode : point de vue des systèmes. On cherche à résoudre le système AX = B avec $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et

$$B = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
. On a les équivalences :

$$AX = B \iff \begin{pmatrix} 1 & 4 & 3 \\ 2 & 5 & 3 \\ 3 & 6 & 0 \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$\underset{L_{2} \leftarrow L_{2} - 2L_{1} \\ L_{3} \leftarrow L_{3} - 3L_{1}} \begin{pmatrix} 1 & 4 & 3 \\ 0 & -3 & -4 \\ 0 & -6 & -9 \end{pmatrix} \times X = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix} \times B$$

$$\underset{L_{3} \leftarrow L_{3} - 2L_{2} \\ L_{3} \leftarrow -L_{3}} \begin{pmatrix} 1 & 4 & 3 \\ 0 & -3 & -4 \\ 0 & 0 & 1 \end{pmatrix} \times X = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 2 & -1 \end{pmatrix} \times B$$

$$\underset{L_{1} \leftarrow L_{1} + 3L_{3} \\ L_{1} \leftarrow L_{1} + \frac{3}{3}L_{2} \\ L_{2} \leftarrow -\frac{1}{3}L_{2} \end{pmatrix} \times X = \begin{pmatrix} -4 & 6 & -\frac{7}{3} \\ 2 & -3 & \frac{4}{3} \\ -1 & 2 & -1 \end{pmatrix} \times B$$

$$(11.85)$$

Donc
$$A^{-1} = \frac{1}{3} \begin{pmatrix} -12 & 18 & -7 \\ 6 & -9 & 4 \\ -3 & 6 & -3 \end{pmatrix}$$

Autre présentation :

Soient
$$A, M \in \mathcal{M}_3(\mathbb{K}) \ (A = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 5 & 2 \\ 3 & 6 & 0 \end{pmatrix})$$

On a les équivalences :

$$AM = I_3 \iff \begin{pmatrix} 1 & 4 & 3 \\ 2 & 5 & 2 \\ 3 & 6 & 0 \end{pmatrix} M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \iff \cdots \iff \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} M = \frac{1}{3} \begin{pmatrix} -12 & 18 & -7 \\ 6 & -9 & 4 \\ -3 & 6 & -3 \end{pmatrix}$$
(11.86)

Ainsi, on a trouvé un inverse à droite, donc un inverse, de A.

B) Cas d'une matrice quelconque

Exemple:

On voit ici que la matrice A est de rang 4 (puisqu'elle est équivalente à A'). On peut maintenant faire des transformations élémentaires pour se ramener à $J_{5,6,4}$.

 $[\]ast.$ Comme il n'y a plus que des 0 sur la troisième colonne, on fait un échange de colonne.

Généralisation, théorème :

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, de rang r. Alors :

1. Une succession de transformations élémentaires sur les lignes et, éventuellement, d'échange de colonnes, conduit à une matrice du type :

(À adapter quand r = 0: on a alors A = 0)

2. Des transformations élémentaires sur les colonnes conduisent alors à $J_{n,p,r}$.

On retrouve ainsi le fait que
$$A$$
 est équivalente à $J_{n,p,r}: J_{n,p,r} = \underbrace{Q_m \dots Q_1}_{\in \mathcal{GL}_n(\mathbb{K})} A \underbrace{P_1 \dots P_k}_{\in \mathcal{GL}_p(\mathbb{K})}$

Remarque:

Une matrice du type de G s'appelle une réduite de Gauss. Une telle matrice est évidemment de rang r. Par conséquent, si, partant de A de rang inconnu, on arrive à G, on trouve alors le rang de A.

Démonstration (Rapide):

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

Pour la première colonne de A, si elle est nulle :

- Soit toutes les autres colonnes de A sont nulles, et alors A = 0.
- Soit une colonne, C_j , n'est pas nulle : on fait alors $C_1 \leftrightarrow C_j$.

On peut supposer maintenant $C_1 \neq 0$.

Si $a_{1,1} = 0$, on cherche i tel que $a_{i,1} \neq 0$ (c'est possible car $C_1 \neq 0$), et on fait $L_1 \leftrightarrow L_i$.

On peut supposer maintenant $a_{1,1} \neq 0$.

On fait ensuite les transformations $L_i \leftarrow L_i - \frac{a_{i,1}}{a_{1,1}} L_1$ (pour $i \ge 2$), ce qui amène à :

$$A_{1} = \begin{pmatrix} * & - & - \\ \hline 0 & & \\ \vdots & & \end{pmatrix}$$
 (11.89)

Puis on recommence avec A' et ainsi de suite, jusqu'à ce qu'on arrive à

XIII Synthèse et compléments sur les systèmes

A) Définition

Un système linéaire de n équations, p inconnues à coefficients dans $\mathbb K$ est :

$$\begin{cases}
 a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p = b_1 \\
 a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,p}x_p = b_2 \\
 \vdots \\
 a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,p}x_p = b_n
\end{cases} (S)$$

Où la matrice $A=(a_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}}\in \mathcal{M}_{n,p}(\mathbb{K})$ est appelée la matrice du système, $X=\begin{pmatrix}x_1\\\vdots\\x_p\end{pmatrix}$ la colonne des

inconnues et $B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$ la colonne du second membre.

Résoudre (S), c'est donner l'ensemble des solutions, c'est-à-dire l'ensemble des p-uplets $(x_1, \dots x_p) \in \mathbb{K}^p$ tels que les égalités de (S) soient satisfaites.

B) Interprétation

(S) **peut traduire une égalité vectorielle du type** $\sum_{j=1}^{p} x_i \vec{v}_j = \vec{w}$, où les \vec{v}_j sont les vecteurs de composantes $\begin{pmatrix} a_{1,j} \\ \vdots \\ a_{n,j} \end{pmatrix}$ et \vec{w} le vecteur de composantes $\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$ (dans une base \mathscr{B}_F d'un espace vectoriel F

de dimension n, par exemple $\mathcal{M}_{n,1}(\mathbb{K})$ avec sa base naturelle). On voit alors que :

- (S) admet au moins une solution si et seulement si $\vec{w} \in \text{Vect}(\vec{v}_1, \vec{v}_2, \dots \vec{v}_p)$.
- (S) admet au plus une solution si et seulement si $(\vec{v}_1, \vec{v}_2, \dots \vec{v}_p)$ est libre.

Démonstration (le premier point est évident) :

- Si $(\vec{v}_1, \vec{v}_2, \dots \vec{v}_p)$ est libre :
 - ⋄ si il n'y a pas de solution, on a 0 solutions.
 - ♦ si il y en a une, disons $(x_1, x_2, ... x_p)$. Soit $(x'_1, x'_2, ... x'_p)$ une autre solution. Montrons que $(x_1, x_2, ... x_p) = (x'_1, x'_2, ... x'_p)$. On a $\sum_{j=1}^p x_j \vec{v}_j = \sum_{j=1}^p x'_j \vec{v}_j = \vec{w}$, soit $\sum_{j=1}^p (x_j x'_j) \vec{v}_j = 0$. Donc ∀k ∈ [1, p], $x_k = x'_k$.
- Si $(\vec{v}_1, \vec{v}_2, \dots \vec{v}_p)$ est liée, il existe $(\lambda_1, \lambda_2, \dots, \lambda_p) \neq (0, 0, \dots 0)$ tel que $\sum_{j=1}^p \lambda_j \vec{v}_j = 0$. Donc si $(x_1, x_2, \dots x_p)$ est solution de (S), alors $(x_1 + \lambda_1, x_2 + \lambda_2, \dots, x_p + \lambda_p)$ en est aussi solution.

Remarque:

Si $(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p)$ est une base de F, (n=p), alors (S) admet une unique solution quel que soit \vec{w} .

(S) **peut traduire une égalité du type** $\varphi(\vec{u}) = \vec{w}$, où φ est une application linéaire d'un espace E de dimension p vers un espace F de dimension n et dont la matrice dans les bases \mathscr{B}_E et \mathscr{B}_F données

est A et où \vec{w} est un élément de F de composantes $\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$ dans \mathscr{B}_F et où \vec{u} est un vecteur (inconnu) de

composantes
$$\begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$
 dans \mathscr{B}_E (remarque : si $\mathscr{B}_E = (e_1, e_2 \dots e_p)$, les \vec{v}_j sont les $\varphi(\vec{e}_j)$).

- (S) admet au moins une solution si et seulement si $\vec{w} \in \text{Im } \varphi$.
- (S) admet au plus une solution si et seulement si φ est injective (même démonstration).
- Si φ est bijective (alors n=p), (S) a une et une seule solution, quel que soit le second membre.
- Si φ n'est pas bijective, le comportement de (S) dépend du second membre :
 - \diamond Si $\vec{w} \notin \text{Im } \varphi$, alors (S) n'a pas de solution.
 - \diamond Si $\vec{w} \in \operatorname{Im} \varphi,$ alors (S) a au moins une solution. Plus précisément :
 - Si φ est injective, une seule solution.
 - Sinon, une infinité (pour \mathbb{K} infini), et ces solutions sont les $\{\vec{u}_0 + \vec{n}, \vec{n} \in \ker \varphi\}$, où \vec{u}_0 est une solution fixée de (S). En effet : si \vec{u}_0 est solution, alors : \vec{u} solution $\iff \varphi(\vec{u}_0) = \varphi(\vec{u}) \iff \vec{u}_0 \vec{u} \in \ker \varphi$.

Cas particulier:

Si n=p (alors φ est injective si et seulement si φ est surjective). Si φ n'est pas bijective, alors :

- Si $\vec{w} \notin \text{Im } \varphi$, alors (S) n'a pas de solution.
- Si $\vec{w} \in \text{Im } \varphi$, alors (S) a une infinité de solutions.

(S) peut traduire un système de la forme

$$\begin{cases}
\varphi_1(u) = b_1 \\
\varphi_2(u) = b_2 \\
\vdots \\
\varphi_n(u) = b_n
\end{cases}$$
(11.91)

Où les φ_i sont n formes linéaires sur un espace vectoriel E de dimension p:

$$\varphi_i \colon E \longrightarrow \mathbb{K}$$
 (11.92)
$$u \text{ de composantes} \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \longmapsto \sum_{j=1}^p a_{i,j} x_j$$

Dans le cas particulier d'un système homogène (c'est-à-dire que la colonne du second membre est nulle), le système traduit : $u \in \bigcap_{i=1}^n H_i$ où H_i est l'hyperplan ker φ_i .

Remarque:

Dans tout les cas, l'ensemble des solutions de (S) : AX = B est l'ensemble $\{X_0 + U, U \in \mathcal{S}_H\}$ où X_0 est une solution de (S) et \mathcal{S}_H l'ensemble des solutions du système (H) homogène associé à (S) :

$$AX = 0 (H)$$

C) Résolution

Après méthode du pivot (transformation sur les lignes et, éventuellement, échange d'inconnues), on est ramené à :

$$\begin{pmatrix}
* & - & - & - & - & - \\
0 & \ddots & - & - & - & - \\
\vdots & * & - & - & - & - \\
\vdots & * & - & - & - & - \\
\vdots & 0 & \vdots & \vdots & 0 \\
0 & \dots & 0 & 0
\end{pmatrix}
\begin{pmatrix}
x_1 \\ x_2 \\ \vdots \\ x_p
\end{pmatrix} = \begin{pmatrix}
b_1 \\ b_2 \\ \vdots \\ \vdots \\ \vdots \\ b_n
\end{pmatrix}$$
(S)

où le premier bloc est carré de taille r.

On voit déjà que (S) est compatible si et seulement si $\forall i \in [r+1, n], b_i = 0$.

- Si $\exists i \in [r+1, n], b_i \neq 0$, alors (S) est incompatible.
- Si $\forall i \in [r+1, n], b_i = 0$, le système (S) équivaut alors au système (S') :

$$\begin{pmatrix} * & - & - & | & - & - & - \\ 0 & \ddots & - & | & - & - & - \\ \vdots & \ddots & * & | & - & - & - \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_r \end{pmatrix}$$
(S')

Or, en tant que d'inconnues $x_1, x_2, \dots x_r$, ayant fixé les autres, le système est un système triangulaire supérieur sans 0 sur la diagonale :

$$\begin{pmatrix} * & - & - \\ 0 & \ddots & - \\ \vdots & \ddots & * \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = \begin{pmatrix} b_1 - \sum_{j=r+1}^p a_{1,j} x_j \\ \vdots \\ b_r - \sum_{j=r+1}^p a_{r,j} x_j \end{pmatrix}$$
(11.93)

Le système a des solutions, obtenues « en fixant arbitrairement p-r inconnues ».

Ainsi:

On considère un système à n équations, p inconnues, de rang r. Alors :

- Il y a n-r conditions de compatibilité
- Lorsqu'elles sont satisfaites, le système admet des solutions avec p-r degrés de liberté.

Cas particulier:

- Si r = n, le système est toujours compatible (0 conditions de compatibilité)
- Si r = p et que le système est compatible, il y a une unique solution.
- Si r = p = n, le système a une et une seule solution.
- Si le système est homogène, il est toujours compatible (au moins la solution nulle) et l'ensemble de ses solution est un \mathbb{K} -ev de dimension p-r.

D) Compléments

1) Polynôme de matrices

Soit $A \in \mathcal{M}_m(\mathbb{K})$.

Pour $P \in \mathbb{K}[X]$, disons $P = \sum_{k=0}^{n} a_k X^k$, on note $P(A) = \sum_{k=0}^{n} a_k A^k$ $(A^0 = I_m)$.

Alors l'application $\phi \colon \mathbb{K}[X] \longrightarrow \mathscr{M}_m(\mathbb{K})$ est un morphisme de \mathbb{K} -algèbres, c'est-à-dire que pour tous $P \longmapsto P(A)$

 $P, Q \in \mathbb{K}[X] \text{ et } \lambda \in \mathbb{K} :$

- $(P + \lambda Q)(A) = P(A) + \lambda Q(A)$
- $(PQ)(A) = P(A) \times Q(A)$
- $1_{\mathbb{K}[X]}(A) = I_m$

(Vérifications simples, sauf pour la multiplication où il faut faire attention)

Proposition:

Toute matrice A admet un polynôme annulateur de A non nul et de degré $\leq m^2$ (un polynôme annulateur est un polynôme tel que P(A) = 0).

En effet : $A^0, A^1, \dots A^{m^2}$ sont $m^2 + 1$ vecteurs de $\mathcal{M}_m(\mathbb{K})$. Donc la famille $(A^k)_{k \in \llbracket 0, m^2 \rrbracket}$ est liée. Il existe donc $(\lambda_0, \lambda_1, \dots, \lambda_{m^2}) \neq (0, 0, \dots, 0)$ tel que $\sum_{k=0}^{m^2} \lambda_k A^k = 0$. Le polynôme $P = \sum_{k=0}^{m^2} \lambda_k X^k$ est donc non nul et vérifie P(A) = 0.

(On a montré en même temps que φ n'est pas injective, puisque $\ker \varphi \neq \{0\}$).

Proposition:

Il existe $M \in \mathbb{K}[X]$ tel que $\{P \in \mathbb{K}[X], P(A) = 0\} = \{MQ, Q \in \mathbb{K}[X]\}.$

M est unique à une constante multiplicative près.

En effet : On pose M un polynôme de degré minimal (mais non nul) annulateur de A.

Soit alors N un autre polynôme annulateur.

La division euclidienne de N par M donne :

N = MQ + R avec $\deg R < \deg M$

Donc $N(A) = M(A) \times Q(A) + R(A)$. Donc R(A) = 0. Donc R = 0 car sinon M n'est pas de degré minimal. Donc M divise N.

2) Matrices semblables

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. On dit que A et B sont semblables (ou que B est semblable à A) lorsqu'il existe $P \in \mathcal{GL}_n(\mathbb{K})$ tel que $B = P^{-1}AP$

On peut montrer aisément que « être semblable à » est une relation d'équivalence. Elle est plus fine que la relation « être équivalent à » sur $\mathcal{M}_n(\mathbb{K})$, c'est-à-dire que « être semblable à » implique « être équivalent à ».

Mais la réciproque est fausse : $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ et $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ sont équivalentes (car de même rang), mais non semblables : si on trouve P tel que $A = P^{-1}IP$, alors $A = P^{-1}P = I$.

Ainsi, B est semblable à A si et seulement si elles représentent le même endomorphisme dans une base différente.

Plus précisément :

Étant donné E un \mathbb{K} -ev de dimension n muni d'une base \mathscr{B} , et $\varphi \in \mathscr{L}(E)$ tel que $A = \operatorname{mat}(\varphi, \mathscr{B})$, B est semblable à A si et seulement si il existe une autre base \mathscr{B}' de E telle que $B = \operatorname{mat}(\varphi, \mathscr{B}')$. (La démonstration est la même que pour l'équivalence)

Une matrice semblable à une matrice diagonale est une matrice diagonalisable (attention, toutes ne le sont pas)

Exemple:

On considère la matrice $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Montrons que A n'est pas diagonalisable.

Soit E un \mathbb{K} -ev de dimension $\widehat{2}$ muni d'une base $\mathscr{B} = (e_1, e_2)$.

Soit $\varphi \in \mathcal{L}(E)$ tel que $A = \max(\varphi, \mathcal{B})$.

Peut-on trouver \mathscr{B}' telle que $mat(\varphi, \mathscr{B}')$ soit diagonale?

Supposons que \mathscr{B}' existe, disons $\mathscr{B}' = (e'_1, e'_2)$.

Alors il existe $\lambda_1, \lambda_2 \in \mathbb{R}$ tels que $\varphi(e_1') = \lambda_1 e_1'$ et $\varphi(e_2') = \lambda_2 e_2'$. Soit $\begin{pmatrix} x \\ y \end{pmatrix}$ la colonne des composantes

de e'_1 dans \mathscr{B} .

Alors
$$A \begin{pmatrix} x \\ y \end{pmatrix} = \lambda_1 \begin{pmatrix} x \\ y \end{pmatrix}$$
, donc $\begin{cases} x+y=\lambda_1 x \\ y=\lambda_1 y \end{cases}$. Si $\lambda_1 \neq 1$, alors $x=y=0$, ce qui est impossible car e_1' est un vecteur d'une base.

Donc $\lambda_1 = 1$. De même, $\lambda_2 = 1$.

Donc $\varphi = \mathrm{Id}_E$, ce qui est contradictoire car $A \neq I_2$. Donc A n'est pas diagonalisable.

3) Trace

Définition:

Soit
$$A=(a_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant n}}\in \mathscr{M}_n(\mathbb{K}).$$
 On note

$$Tr(A) = \sum_{i=1}^{n} a_{i,i}$$
 (11.94)

Proposition:

L'application $\mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$ est une forme linéaire (évident). $A \longmapsto \operatorname{Tr}(A)$

Proposition:

Pour tous $A, B \in \mathcal{M}_n(\mathbb{K})$, $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$.

Démonstration:

Soit
$$A=(a_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant n}},\,B=(b_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant n}},\,C=AB=(c_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant n}},\,D=BA=(d_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant n}}.$$
 On a :

$$\operatorname{Tr}(AB) = \operatorname{Tr}(C) = \sum_{i=1}^{n} c_{i,i} = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} a_{i,k} b_{k,i} \right) = \sum_{k=1}^{n} \left(\sum_{i=1}^{n} a_{i,k} b_{k,i} \right)$$
$$= \sum_{k=1}^{n} \left(\sum_{i=1}^{n} b_{k,i} a_{i,k} \right) = \sum_{k=1}^{n} d_{k,k} = \operatorname{Tr}(D) = \operatorname{Tr}(BA)$$
(11.95)

Conséquence:

Si A et B sont semblables, alors elles ont même trace (réciproque fausse) :

$$\operatorname{Tr}(B) = \operatorname{Tr}(P^{-1}AP) = \operatorname{Tr}(P^{-1}(AP)) = \operatorname{Tr}(APP^{-1}) = \operatorname{Tr}(A)$$
 (11.96)

Contre-exemple pour la réciproque :
$$\operatorname{Tr}\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \operatorname{Tr}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 2$$
, mais $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ n'est pas sem-

blable à
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

Conséquence:

On peut définir la trace d'un endomorphisme :

 $\operatorname{Tr}(\varphi)$ est la trace de n'importe quelle matrice A telle que $A=\operatorname{mat}(\varphi,\mathscr{B})$.