

Chapitre 5 : Intégration sur un segment de fonctions à valeurs dans

 \mathbb{C}

I Intégration des fonctions à valeurs dans $\mathbb C$

Dans tout ce paragraphe, I désigne un intervalle infini de \mathbb{R} , a et b deux réels, et on convient que si a > b, la notation [a, b] désigne le segment [b, a].

A) Notations et rappels

Soit $f: I \to \mathbb{C}$ une fonction (dite « complexe, d'une variable réelle »)

Soient Re f et Im f les parties réelles et imaginaires de f (c'est-à-dire les fonctions de I dans \mathbb{R} définies par : $\forall x \in I, f(x) = \text{Re}(f(x)) + i \text{Im}(f(x))$)

On rappelle que f est continue sur I si et seulement si $\operatorname{Re} f$ et $\operatorname{Im} f$ sont continues sur I.

On notera de plus \bar{f} et |f| les fonctions définies sur I par : $\forall x \in I, \bar{f}(x) = f(\bar{x})$ et $\forall x \in I, |f|(x) = |f(x)|$. Bien entendu, si f est continue sur I, alors \bar{f} et |f| le sont aussi.

B) Fonctions continues par morceaux sur un segment

Soit $f: [a, b] \to \mathbb{C}$. On dit que f est continue par morceaux sur [a, b] lorsqu'il existe une subdivision $\sigma = (x_0, x_1, \dots x_n)$ de [a, b] telle que, pour tout $i \in [1, n]$:

- f est continue sur $]x_{i-1}, x_i[$
- f a une limite (dans \mathbb{C}) à droite en x_{i-1}
- f a une limite (dans \mathbb{C}) à gauche en x_i

(C'est la définition analogue à celle qui concerne les fonctions à valeurs dans \mathbb{R})

On prouve immédiatement que, pour $f \colon [a,b] \to \mathbb{C}$:

f continue par morceaux $\iff \operatorname{Re} f$ et $\operatorname{Im} f$ continues par morceaux.

Et donc, aisément:

Si f et g sont continues par morceaux sur [a,b], alors les fonctions \bar{f} , |f| $\lambda f + \mu g$ (où $\lambda, \mu \in \mathbb{C}$) sont aussi continues par morceaux.

C) Définition

Définition:

Soit $f\colon\thinspace [a,b]\to\mathbb{C},$ continue par morceaux. On peut définir :

$$\int_{a}^{b} f(t) dt \stackrel{=}{\underset{\text{def}}{=}} \int_{a}^{b} \operatorname{Re}(f(t)) dt + i \int_{a}^{b} \operatorname{Im}(f(t)) dt$$
(5.1)

Remarque:

S'il se trouve que f est à valeurs réelles, on retrouve bien l'intégrale de f sur [a,b] au sens du chapitre précédent.

D) Premières propriétés

En utilisant la définition et les propriétés des intégrales des fonctions réelles, on établit aisément les propriétés suivantes :

1) Linéarité

Proposition:

Si f et g sont deux fonctions complexes continues par morceaux sur [a,b], alors pour tous $\lambda, \mu \in \mathbb{C}$:

$$\int_{a}^{b} (\lambda f + \mu g)(t) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt$$

$$(5.2)$$

Remarque:

La relation de définition du D) peut maintenant être vue comme une conséquence de la linéarité.

2) Conjugaison

Proposition:

Si $f\colon [a,b] \to \mathbb{C}$ est continue par morceaux : $\int_a^b \bar{f}(t) \, \mathrm{d}t = \overline{\int_a^b f(t) \, \mathrm{d}t}$

3) Chasles

Proposition:

Si f est une fonction complexe continue par morceaux sur un segment contenant a, b, c:

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt$$
 (5.3)

4) Fonctions « presque partout égales »

Proposition:

Si f et g sont continues par morceaux sur [a, b] et si f et g ne diffèrent que sur un nombre fini de points, alors $\int_a^b f(t) dt = \int_a^b g(t) dt$.

Il en résulte, comme pour les fonctions à valeurs dans R, que le calcul de l'intégrale d'une fonction continue par morceaux se ramène au calcul d'une somme d'intégrales de fonctions continues.

5) Majoration du module

Proposition:

Soit $f: [a, b] \to \mathbb{C}$, continue par morceaux. Si $a \le b$, alors $\left| \int_a^b f(t) dt \right| \le \int_a^b |f(t)| dt$

Démonstration:

Posons $\int_a^b f(t) dt = re^{i\theta}$, avec $(r, \theta) \in \mathbb{R}_+ \times \mathbb{R}$ (alors $\left| \int_a^b f(t) dt \right| = r$)

Alors:

$$r = e^{-i\theta} \int_a^b f(t) dt = \int_a^b e^{-i\theta} f(t) dt$$
 (5.4)

Soient u et v les parties réelles et imaginaires de la fonction $t\mapsto e^{-i\theta}f(t)$.

ent
$$u$$
 et v les parties réelles et imaginaires de la fonction $t \mapsto e^{-i\theta} f(t)$.

Alors $\underbrace{r}_{\in \mathbb{R}} = \underbrace{\int_a^b u(t) \, \mathrm{d}t}_{\in \mathbb{R}} + i\underbrace{\int_a^b v(t) \, \mathrm{d}t}_{\in \mathbb{R}}$. Donc $\int_a^b v(t) \, \mathrm{d}t = 0$ et $\int_a^b u(t) \, \mathrm{d}t = r$.

Or, pour tout $t \in [a,b]$, $u(t) \leq |u(t)+iv(t)| = |e^{-i\theta}f(t)| = |f(t)|$

Donc $r = \int_a^b u(t) \leqslant \int_a^b |f(t)| dt$.

E) Intégrale d'une fonction continue et primitives

Rappel:

Soit $f: I \to \mathbb{C}$. Alors f est dérivable si et seulement si $\operatorname{Re} f$ et $\operatorname{Im} f$ sont dérivables, et on a alors : $\forall x \in I, f'(x) = (\operatorname{Re} f)'(x) + i(\operatorname{Im} f)'(x)$

Soit $f: I \to \mathbb{C}$, dérivable. Si $\forall x \in I, f'(x) = 0$, alors $\exists k \in \mathbb{C}, \forall x \in I, f(x) = k$ (évident puisque $f' = 0 \iff (\operatorname{Re} f)' = (\operatorname{Im} f)' = 0$, et I est un intervalle)

Soit $f: I \to \mathbb{C}$. Une primitive de f (sur I) est une fonction $F: I \to \mathbb{C}$, dérivable, telle que F' = f. Si f admet une primitive F, alors l'ensemble des primitives de f est l'ensembles des fonctions F + k, kdécrivant C. (C'est un corollaire du point précédent)

Exemple:

Rappelons que pour z = u + iv avec $(u, v) \in \mathbb{R}^2$, on définit e^z par :

$$e^z = e^u e^{iv} = e^u (\cos v + i \sin v) \tag{5.5}$$

Soit $m \in \mathbb{C}$, et soit $f: \mathbb{R} \to \mathbb{C}$ la fonction définie par : $\forall x \in R, f(x) = e^{mx}$.

Alors f est dérivable sur \mathbb{R} et : $\forall x \in \mathbb{R}, f'(x) = me^{mx}$.

En effet, si on pose $m = \alpha + i\beta$ avec $(\alpha, \beta) \in \mathbb{R}^2$, on a :

 $\forall x \in \mathbb{R}, f(x) = e^{\alpha x} (\cos \beta x + \mathbf{i} \sin \beta x).$

Donc f est dérivable sur $\mathbb R$ et, pour tout $x \in \mathbb R$:

$$f'(x) = e^{\alpha x} (\alpha \cos \beta x - \beta \sin \beta x) + i e^{\alpha x} (\alpha \sin \beta x + \beta \cos \beta x)$$

$$e^{\alpha x} (\alpha e^{i\beta x} + \beta i e^{i\beta x}) = m e^{mx}$$
(5.6)

Il en résulte que si $m \in \mathbb{C}^*$, la fonction $x \mapsto \frac{1}{m} e^{mx}$ est une primitive sur \mathbb{R} de la fonction $x \mapsto e^{mx}$.

Théorème:

Soit $f: I \to \mathbb{C}$, continue. Alors, pour tout $a \in I$:

La fonction
$$F: I \longrightarrow \mathbb{C}$$
 est dérivable, de dérivée f .
 $x \longmapsto \int_a^x f(t) dt$

Conséquence:

Soit $f: I \to \mathbb{C}$, continue. Alors f admet des primitives sur I, et, de plus, pour chaque $a \in I$, $x \mapsto \int_a^x f(t) dt$ est l'unique primitive de f sur I qui prenne la valeur 0 en a.

Conséquence:

Soit $f: [a, b] \to \mathbb{C}$, continue, et soit F une primitive de f sur [a, b]. Alors $: \int_a^b f(t) dt = F(b) - F(a)$ (qu'on note $[F(x)]_a^b$)

Démonstration (du théorème) :

Avec les hypothèses du théorème, notons $f_1 = \operatorname{Re} f$ et $f_2 = \operatorname{Im} f$.

Alors, pour tout $x \in I$: $\int_a^x f(t) dt = \int_a^x f_1(t) dt + i \int_a^x f_2(t) dt$, et on sait que les fonctions $x \mapsto \int_a^x f_1(t) dt$ et $x \mapsto \int_a^x f_2(t) dt$ sont dérivables sur I, de dérivées respectives f_1 et f_2 (puisque f_1 et f_2 sont continues), d'où le résultat.

Les conséquences du théorème se démontrent exactement comme dans le cas réel.

Application à la recherche de primitives des fonctions réelles

Exemple:

Nous allons déterminer une primitive sur \mathbb{R} de la fonction réelle $x \mapsto e^{3x} \cos 2x$. On peut le faire à partir de deux intégrations par partie, mais on peut faire autrement :

Pour tout
$$x \in \mathbb{R}$$
, on a $\int_0^x e^{3t} \cos 2t \, dt = \text{Re}\left(\int_0^x e^{(3+2i)t} \, dt\right)$ (selon la définition du C))
Or, $\int_0^x e^{(3+2i)t} \, dt = \left[\frac{e^{(3+2i)t}}{3+2i}\right]_0^x = \frac{1}{3+2i}(e^{(3+2i)x} - 1) = \frac{3-2i}{13}(e^{3x}(\cos 2x + i\sin 2x) - 1)$
Donc $\int_0^x e^{3t} \cos 2t \, dt = \frac{e^{3x}}{13}(3\cos 2x + 2\sin 2x) - \frac{3}{13}$

F) Intégration par parties

Rappel:

Soient $f, g: I \to \mathbb{C}$

Si f et g sont continues, alors fg est continue.

Si f et g sont dérivables, alors fg est dérivable, de dérivée (fg)' = f'g + fg'.

Soit $n \in \mathbb{N}$. Une fonction $f: I \to \mathbb{C}$ est dite de classe \mathcal{C}^n (sur I) lorsqu'elle est n fois dérivable sur I et lorsque sa dérivée n-ième est continue sur I.

On établit aisément que f est de classe \mathcal{C}^n si et seulement si $\operatorname{Re} f$ et $\operatorname{Im} f$ le sont.

De ces résultats, on tire immédiatement, comme dans le cas réel :

Théorème:

Soient $f, g: [a, b] \to \mathbb{C}$.

Si f et g sont de classe C^1 sur [a, b]:

$$\int_{a}^{b} f'(t)g(t) dt = [f(t)g(t)]_{a}^{b} - \int_{a}^{b} f(t)g'(t) dt$$
(5.7)

Conséquence (Formule de Taylor avec reste intégral (à l'ordre n-1)) :

Si $f: [a,b] \to \mathbb{C}$ est de classe \mathcal{C}^n ($n \ge 1$) sur [a,b]:

$$f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2!}f''(a) + \dots + \frac{(b-a)^{n-1}}{(n-1)!}f^{(n-1)}(a) + \int_a^b \frac{(b-x)^{n-1}}{(n-1)!}f^{(n)}(x) dx$$
 (5.8)

(La démonstration est analogue à celle fait dans le cas réel : faire une récurrence)

Conséquence (Inégalité de Taylor-Lagrange (à l'ordre n-1)) :

Si f est de classe C^n ($n \ge 1$) sur [a, b], et si M désigne un majorant du module de $f^{(n)}$ sur [a, b] (il en existe car une fonction complexe continue sur un segment de \mathbb{R} est bornée), alors :

$$\left| f(b) - \left(f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2!}f''(a) + \dots + \frac{(b-a)^{n-1}}{(n-1)!}f^{(n-1)}(a) \right) \right| \le \frac{|b-a|^n}{n!}M$$
 (5.9)

Démonstration:

Selon le théorème précédent, il suffit de montrer que :

$$\left| \int_{a}^{b} \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) \, \mathrm{d}x \right| \le \frac{|b-a|^{n}}{n!} M \tag{5.10}$$

• Si $a \leq b$, on a alors :

$$\left| \int_{a}^{b} \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) \, \mathrm{d}x \right| \le \int_{a}^{b} \left| \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) \right| \, \mathrm{d}x \tag{5.11}$$

Or, pour tout $x \in [a, b]$, $\left| \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) \right| = \frac{(b-x)^{n-1}}{(n-1)!} |f^{(n)}(x)| \le M \frac{(b-x)^{n-1}}{(n-1)!}$

D'où, selon les résultats concernant les intégrales de fonctions réelles :

$$\int_{a}^{b} \left| \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) \right| dx \le M \int_{a}^{b} \frac{(b-x)^{n-1}}{(n-1)!} dx = M \left[-\frac{(b-x)^{n}}{n!} \right]_{a}^{b} = M \frac{(b-a)^{n}}{n!}$$
 (5.12)

• Si $b \le a$, on procède de même en écrivant :

$$\left| \int_{a}^{b} \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) \, \mathrm{d}x \right| = \left| \int_{b}^{a} \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) \, \mathrm{d}x \right|$$
 (5.13)

et que, pour tout $x \in [a, b]$, $\left| \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) \right| = \frac{(x-b)^{n-1}}{(n-1)!} |f^{(n)}(x)|$.

Remarque importante (rappel):

Pour n=1, on obtient l'inégalité des accroissements finis, mais on rappelle que l'égalité des accroissements finis est fausse pour les fonctions à valeurs dans \mathbb{C} :

Si $f(x) = x^2 + ix^3$ sur [0, 1], il n'existe pas de $c \in]0, 1[$ tel que f(1) - f(0) = (1-0)f'(c) car il faudrait que $1 + i = 2c + 3ic^2$, ce qui est impossible.

G) Changement de variable

Théorème:

Soit $\varphi \colon [a,b] \to \mathbb{R}$ de classe \mathcal{C}^1 , et soit $f \colon I \to \mathbb{C}$, continue, avec $\varphi([a,b]) \subset I$. Alors $\int_a^b f(\varphi(t)\varphi'(t) dt = \int_{\varphi(a)}^{\varphi(b)} f(u) du$

La démonstration est analogue à celle faite dans le cas où f est à valeurs réelles, en utilisant bien sûr le fait que si $F\colon I\to\mathbb{C}$ est une primitive de f sur I, alors $F\circ\varphi$ est dérivable sur [a,b] et $\forall t\in [a,b]$, $(F\circ\varphi)'(t)=F'(\varphi(t))\times\varphi'(t)=f(\varphi(t))\times\varphi'(t)$

H) Remarque importante pour finir

De même que l'égalité des accroissements finis est fausse pour les fonctions à valeurs dans \mathbb{C} , le théorème de la moyenne est faux aussi pour f à valeurs dans \mathbb{C} . (même exemple que pour l'égalité des accroissements finis)

II Intégration des fonctions rationnelles (à coefficients dans \mathbb{C})

A) Méthode générale

Rappel:

Soit $F \in \mathbb{C}(X)$, admettant des pôles complexes $a_1, a_2, \dots a_p$ avec les multiplicités $n_1, n_2, \dots n_p$. Alors F se décompose en éléments simples dans $\mathbb{C}(X)$ sous la forme :

$$F = E + \sum_{i=1}^{p} \left(\sum_{j=1}^{n_i} \frac{\lambda_{i,j}}{(X - a_i)^j} \right)$$
 (5.14)

Où E est un polynôme à coefficients dans \mathbb{C} (qui est la partie entière de F), et où les $\lambda_{i,j}$ sont des éléments de \mathbb{C} .

Soit maintenant I un intervalle de $\mathbb R$ ne contenant aucun pôle de F. Pour trouver une primitive de $t\mapsto F(t)$ sur I, on est donc ramené à la recherche de primitives des fonctions polynôme et des fonctions du type $t\mapsto \frac{1}{(t-a)^n}$, où $a\in\mathbb C, n\in\mathbb N^*$.

- Cas des fonctions polynomiales : évident
- Cas de $t \mapsto \frac{1}{(t-a)^n}$, où $n \geqslant 2$:

Soit I un intervalle de $\mathbb R$ ne contenant pas a.

Alors la fonction $t \mapsto \frac{1}{(t-a)^n}$ admet sur I la primitive $t \mapsto \frac{-1}{n-1} \frac{1}{(t-a)^{n-1}}$.

(La vérification est immédiate en dérivant...)

- Cas de $t \mapsto \frac{1}{t-a}$ (Les logarithmes de complexes ne sont pas au programme!!)
 - $\diamond \text{ Si } a \in \mathbb{R}, \text{ on sait que } t \mapsto \frac{1}{t-a} \text{ admet sur }] \infty, a[\text{ et sur }] a, +\infty[\text{ la primitive } t \mapsto \ln|t-a|.$
 - $\diamond \text{ Si } a \notin \mathbb{R}, \text{ alors } t \mapsto \frac{1}{t-a} \text{ est défini sur } \mathbb{R} \text{ tout entier, et :}$ $\forall t \in \mathbb{R}, \frac{1}{t-a} = \frac{t-\bar{a}}{(t-a)(t-\bar{a})} = \frac{t-\bar{a}}{t^2-st+p} \text{ avec } s = a+\bar{a} \text{ et } p = a\bar{a}.$

$$\forall t \in \mathbb{R}, \frac{1}{t-a} = \frac{t-\bar{a}}{(t-a)(t-\bar{a})} = \frac{t-\bar{a}}{t^2-st+p} \text{ avec } s = a+\bar{a} \text{ et } p = a\bar{a}.$$

Donc $(s, p) \in \mathbb{R}^2$ et $s^2 - 4p < 0$

On a aussi : $\forall t \in \mathbb{R}, \frac{t-\bar{a}}{t^2-st+p} = \frac{\frac{1}{2}(2t-s)+\frac{s}{2}-\bar{a}}{t^2-st+p}.$ Ainsi, une primitive de $t \mapsto \frac{2t-s}{t^2-st+p}$ sur \mathbb{R} est $t \mapsto \ln(t^2-st+p)$.

On doit donc maintenant trouver une primitive sur \mathbb{R} de $t \mapsto \frac{\frac{s}{2} - \bar{a}}{t^2 - st + n}$

On a, en mettant sous forme canonique : $\forall t \in \mathbb{R}, t^2 - st + p = \left(t - \frac{s}{2}\right)^2 + p - \frac{s^2}{4}$

De plus, on a $p - \frac{s^2}{4} > 0$. On introduit alors $k \in \mathbb{R}_+^*$ tel que $k^2 = p - \frac{s^2}{4}$.

Ainsi, pour $x_0, x \in \mathbb{R}$, on a:

$$\int_{x_0}^x \frac{\mathrm{d}t}{t^2 - st + p} = \int_{x_0}^x \frac{\mathrm{d}t}{(t - \frac{s}{2})^2 + k^2} = \int_{u = \frac{1}{k}(t - \frac{s}{2})}^{\frac{1}{k}(x - \frac{s}{2})} \frac{k \, \mathrm{d}u}{k^2 u^2 + k^2} = \frac{1}{k} \left[\operatorname{Arctan} u \right]_{\frac{1}{k}(x_0 - \frac{s}{2})}^{\frac{1}{k}(x - \frac{s}{2})}$$

Ainsi, une primitive de $t\mapsto \frac{1}{t^2-st+p}$ sur $\mathbb R$ est $t\mapsto \frac{1}{k}\operatorname{Arctan}\left(\frac{1}{k}(t-\frac{s}{2})\right)$

Finalement, une primitive de $t\mapsto \frac{1}{t-a}$ sur $\mathbb R$ est :

$$t \mapsto \frac{1}{2}\ln(t^2 - st + p) + \left(\frac{s}{2} - \bar{a}\right) \frac{1}{\sqrt{p - \frac{s^2}{4}}} \operatorname{Arctan}\left(\frac{t - \frac{s}{2}}{\sqrt{p - \frac{s^2}{4}}}\right)$$
 (5.16)

(5.15)

(Bien entendu, il vaut mieux retenir la méthode que la formule, surtout dans ce dernier cas...!)

B) Cas des fractions rationnelles à coefficients dans \mathbb{R}

D'abord, bien sûr, on sait faire, puisque c'est un cas particulier du A) : on décompose la fraction rationnelle dans C et on intègre...

On peut quand même remarquer que si $F \in \mathbb{R}(X)$, sa partie entière est à coefficients réels, les coefficients apparaissant dans les parties polaires relatives à des pôles réels sont réels (voir le cours sur les fractions rationnelles), et enfin les pôles complexes non réels sont conjugués deux à deux, avec les mêmes multiplicités, et si la partie polaire relative à un pôle $a \in \mathbb{C} \setminus \mathbb{R}$ est $\frac{\lambda_1}{X-a} + \frac{\lambda_2}{(X-a)^2} + \dots + \frac{\lambda_n}{(X-a)^n}$, alors celle relative à \bar{a} est $\frac{\bar{\lambda}_1}{X-\bar{a}} + \frac{\bar{\lambda}_2}{(X-\bar{a})^2} + \cdots + \frac{\bar{\lambda}_n}{(X-\bar{a})^n}$ (cela résulte du fait que pour tout $t \in \mathbb{R}$ non pôle de F, $\overline{F(t)} = F(t)$, puisque $F \in \mathbb{R}(X)$, et de l'unicité de la décomposition en éléments simples).

Ainsi, lorsqu'il apparaît un terme $\frac{\lambda}{X-a}$ (avec $a \in \mathbb{C} \setminus \mathbb{R}$ et $\lambda \in \mathbb{C}$), il apparaîtra aussi $\frac{\bar{\lambda}}{X-\bar{a}}$. Donc, au lieu d'intégrer séparément ces deux termes, on peut plutôt les regrouper :

$$\frac{\lambda}{X-a} + \frac{\bar{\lambda}}{X-\bar{a}} = \frac{(\lambda + \bar{\lambda})X - (\lambda\bar{a} + \bar{\lambda}a)}{X^2 - (a+\bar{a})X + a\bar{a}} = \frac{\alpha X + \beta}{X^2 - sX + p}$$

$$(5.17)$$

Où $\alpha, \beta, s, p \in \mathbb{R}$ et $s^2 - 4p < 0$.

Ensuite, on intègre $t\mapsto \frac{\alpha t+\beta}{t^2-st+p}$ comme dans le cas complexe...

Cependant, regrouper les termes en $\frac{\lambda}{(X-a)^n}$ et $\frac{\bar{\lambda}}{(X-\bar{a})^n}$ pour $n \ge 2$ avant d'intégrer n'a aucun intérêt (on peut le faire après)

C) Exemples

- Déjà, il n'est pas toujours utile de décomposer systématiquement : Une primitive de $t\mapsto \frac{15t^2+4t}{(5t^3+2t^2+1)^7}$ est $t\mapsto \frac{-1}{6}\frac{1}{(5t^3+2t^2+1)^6}$
- Recherche d'une primitive de $t\mapsto \frac{1}{t^2-1}$ sur $I=]-\infty,-1[,]1,+\infty[$ ou $]-1,1[:\frac{1}{X^2-1}=\frac{1}{2}\left(\frac{1}{X-1}-\frac{1}{X+1}\right),$ donc $\forall t\in I,\frac{1}{t^2-1}=\frac{1}{2}\left(\frac{1}{t-1}-\frac{1}{t+1}\right).$ Ainsi, une primitive de $t\mapsto \frac{1}{t^2-1}$ sur I est $t\mapsto \frac{1}{2}\left(\ln|t-1|-\ln|t+1|\right),$ soit aussi $t\mapsto \frac{1}{2}\ln\left|\frac{t-1}{t+1}\right|$
- Recherche d'un primitive de $t\mapsto \frac{1}{(t^3-1)^2}$ sur $I=]-\infty,1[$ ou $]1,+\infty[$: Décomposition en éléments simples dans $\mathbb{C}(X)$:

La partie entière est nulle, et la décomposition est de la forme :

$$\frac{1}{(X^3-1)^2} = \frac{\alpha_1}{(X-1)} + \frac{\alpha_2}{(X-1)^2} + \frac{\beta_1}{(X-j)} + \frac{\beta_2}{(X-j)^2} + \frac{\gamma_1}{(X-j^2)} + \frac{\gamma_2}{(X-j^2)^2}$$
(5.18)

(En utilisant le fait que $\forall t \in \mathbb{R} \setminus \{1\}$, $\frac{1}{(t^3-1)^2}$ est égal à son conjugué et l'unicité de la décomposition en éléments simples, on montre que $\alpha_1, \alpha_2 \in \mathbb{R}, \gamma_1 = \bar{\beta}_1, \gamma_2 = \bar{\beta}_2$ mais on peut faire autrement dans ce cas)

En remplaçant X par jX, on obtient :

$$\frac{1}{(X^3-1)^2} = \frac{\alpha_1}{jX-1} + \frac{\alpha_2}{(jX-1)^2} + \frac{\beta_1}{jX-j} + \frac{\beta_2}{(jX-j)^2} + \frac{\gamma_1}{jX-j^2} + \frac{\gamma_2}{(jX-j^2)^2}
= \frac{j^2\alpha_1}{X-j^2} + \frac{j\alpha_2}{(X-j^2)^2} + \frac{j^2\beta_1}{X-1} + \frac{j\beta_2}{(X-1)^2} + \frac{j^2\gamma_1}{X-j} + \frac{j\gamma_2}{(X-j)^2}$$
(5.19)

Donc, par unicité de la décomposition en éléments simples :

$$\gamma_1 = j^2 \alpha_1, \qquad \gamma_2 = j \alpha_2, \qquad \beta_1 = j^2 \gamma_1 = j \alpha_1, \qquad \beta_2 = j \gamma_2 = j^2 \alpha_2$$
(5.20)

Il nous reste donc à trouver α_1, α_2

En multipliant (5.18) par $(X-1)^2$, on obtient :

$$\frac{1}{(X^2 + X + 1)^2} = \alpha_1(X - 1) + \alpha_2 + (X - 1)^2 G$$
(5.21)

Où G est une fraction rationnelle dont 1 n'est pas pôle.

En remplaçant X par 1, on obtient $\alpha_2 = \frac{1}{9}$

En dérivant formellement cette dernière égalité, on a alors :

$$\frac{-2(2X+1)}{(X^2+X+1)^3} = \alpha_1 + 2(X-1)G + (X-1)^2G'$$
(5.22)

En prenant la valeur en 1, on a alors $\alpha_1 = -\frac{2}{9}$.

Ainsi

$$\frac{1}{(X^3-1)^2} = \frac{1}{9} \left(\frac{-2}{(X-1)} + \frac{1}{(X-1)^2} + \frac{-2j}{(X-j)} + \frac{j^2}{(X-j)^2} + \frac{-2j^2}{(X-j^2)} + \frac{j}{(X-j^2)^2} \right)$$
(5.23)

En regroupant $\frac{j}{(X-j)}$ et $\frac{j^2}{(X-j^2)}$, on obtient :

$$\frac{1}{(X^3-1)^2} = \frac{1}{9} \left(\frac{-2}{(X-1)} + \frac{1}{(X-1)^2} + \frac{2X+4}{X^2+X+1} + \frac{j^2}{(X-j)^2} + \frac{j}{(X-j^2)^2} \right)$$
(5.24)

On a:

$$\frac{2X+4}{X^2+X+1} = \frac{2X+1}{X^2+X+1} + \frac{3}{X^2+X+1} \tag{5.25}$$

Et $\frac{1}{X^2 + X + 1} = \frac{1}{(X + \frac{1}{2})^2 + \frac{3}{4}}$

Or, pour tout $x_0, x \in \mathbb{R}$, on a:

$$\int_{x_0}^{x} \frac{\mathrm{d}t}{(t+\frac{1}{2})^2 + \frac{3}{4}} = \frac{2}{t+\frac{1}{2} = \frac{\sqrt{3}}{2}u} \frac{2}{\sqrt{3}} \int_{\frac{2}{\sqrt{3}}(x_0+\frac{1}{2})}^{\frac{2}{\sqrt{3}}(x+\frac{1}{2})} \frac{\mathrm{d}u}{u^2+1} = \frac{2}{\sqrt{3}} \left[\operatorname{Arctan} u \right]_{\frac{2}{\sqrt{3}}(x_0+\frac{1}{2})}^{\frac{2}{\sqrt{3}}(x+\frac{1}{2})}$$

$$\frac{\mathrm{d}t}{u} = \frac{\sqrt{3}}{2} \frac{\mathrm{d}u}{u}$$
(5.26)

Donc une primitive de $t\mapsto 3\times \frac{1}{t^2+t+1}$ sur $\mathbb R$ est $t\mapsto 2\sqrt{3}\operatorname{Arctan}\left(\frac{2}{\sqrt{3}}(t+\frac{1}{2})\right)$.

D'autre part, une primitive de $t\mapsto \frac{j^2}{(t-j)^2}+\frac{j}{(t-j^2)^2}$ sur $\mathbb R$ est :

$$t \mapsto -\left(\frac{j^2}{t-j} + \frac{j}{t-j^2}\right)$$
, soit aussi $t \mapsto -\left(\frac{-t+1}{t^2+t+1}\right)$.

Ainsi, une primitive sur I de $t \mapsto \frac{1}{(t^3-1)^2}$ est la fonction :

$$t \mapsto \frac{1}{9} \left(-2\ln|t - 1| - \frac{1}{t - 1} + \ln(t^2 + t + 1) + 2\sqrt{3} \operatorname{Arctan}\left(\frac{2}{\sqrt{3}}(t + \frac{1}{2})\right) + \frac{t - 1}{t^2 + t + 1}\right) \quad (5.27)$$

III Primitives des fonctions $t \mapsto e^{\alpha t} P(t)$ où $\alpha \in \mathbb{C}^*$ et $P \in \mathbb{C}[X]$

Soit $\alpha \in \mathbb{C}^*$, $P \in \mathbb{C}[X]$, et soit $f : \mathbb{R} \to \mathbb{C}$ définie par $\forall t \in \mathbb{R}, f(t) = e^{\alpha t}P(t)$. f est continue sur \mathbb{R} ; cherchons une primitive de f.

Étude:

Soit $Q \in \mathbb{C}[X]$, quelconque, et soit $g \colon \mathbb{R} \to \mathbb{C}$ définie par $\forall t \in \mathbb{R}, g(t) = e^{\alpha t}Q(t)$.

Alors g est dérivable, et $\forall t \in \mathbb{R}, g'(t) = e^{\alpha t} (\alpha Q(t) + Q'(t)).$

On a donc les équivalences :

$$g' = f \iff \forall t \in \mathbb{R}, \alpha Q(t) + Q'(t) = P(t)$$

$$\iff \alpha Q + Q' = P$$
(5.28)

(La deuxième équivalence se justifie par le fait que deux polynômes qui coïncident sur une infinité de valeurs sont égaux)

Un peu d'algèbre : Soit $n \in \mathbb{N}$ tel que $\deg(P) \leq n$

Soit
$$\varphi \colon \mathbb{C}_n[X] \longrightarrow \mathbb{C}_n[X]$$

 $Q \longmapsto \alpha Q + Q'$

(la définition a bien un sens car si $Q \in \mathbb{C}_n[X]$, alors $\alpha Q + Q' \in \mathbb{C}_n[X]$)

Alors φ est linéaire (vérification immédiate), et comme $\alpha \neq 0$, on remarque que :

$$\forall Q \in \mathbb{C}_n[X], \deg(\varphi(Q)) = \deg(Q) \tag{5.29}$$

Ainsi, φ est injective (puisque $\varphi(Q) = 0 \implies \deg(\varphi(Q)) = -\infty = \deg(Q) \implies Q = 0$)

Comme φ est un endomorphisme en dimension finie, φ est bijective.

Ainsi, il existe un unique $Q \in \mathbb{C}_n[X]$ tel que $\alpha Q + Q' = P$, et on a même deg $P \leq \deg Q$

Conclusion:

Les primitives de $t \mapsto e^{\alpha t} P(t)$ sur \mathbb{R} sont les $t \mapsto e^{\alpha t} Q(t) + \text{cte}$, où Q est un certain polynôme de même degré que P (on l'obtient par identification)

Ce résultat est faux pour $\alpha = 0$ (en particulier parce que Q est de même degré que P)

Intérêt On peut ainsi obtenir les primitives des fonctions réelles de la forme :

$$t \mapsto e^{\alpha t} P(t) \cos(\omega t)$$
 et $t \mapsto e^{\alpha t} P(t) \sin(\omega t)$ (où $\alpha, \omega \in \mathbb{R}$, et $P \in \mathbb{R}[X]$).

Exemple:

Recherche de primitives de $f_1: t \mapsto e^t(t^2+1)\cos(2t)$ et $f_2: t \mapsto e^t(t^2+1)\sin(2t)$

Soit $f = f_1 + if_2$. Alors $\forall t \in \mathbb{R}, f(t) = e^{(1+2i)t}(t^2+1)$, et si F est une primitive de f, alors $\operatorname{Re} F$ est une primitive de f_1 et $\operatorname{Im} F$ une primitive de f_2 .

On cherche F sous la forme $F(t) = e^{(1+2i)t}(\alpha t^2 + \beta t + \gamma)$

Alors
$$\forall t \in \mathbb{R}, F'(t) = e^{(1+2i)t}((1+2i)(\alpha t^2 + \beta t + \gamma) + (2\alpha t + \beta))$$

Donc

$$F' = f \iff \alpha(1+2\mathbf{i}) = 1 \text{ et } \beta(1+2\mathbf{i}) + 2\alpha = 0 \text{ et } \gamma(1+2\mathbf{i}) + \beta = 1$$

$$\iff \alpha = \frac{1}{1+2\mathbf{i}} \text{ et } \beta = \frac{-2\alpha}{1+2\mathbf{i}} \text{ et } \gamma = \frac{1}{1+2\mathbf{i}} (1-\beta)$$
(5.30)

D'où, après calculs, on obtient qu'une primitive de f est F donnée par :

$$\forall t \in \mathbb{R}, F(t) = \frac{1}{125} e^{(1+2\mathbf{i})t} \left(25(1-2\mathbf{i})t^2 + 10(3+4\mathbf{i})t + (3-46\mathbf{i}) \right)$$
(5.31)

Ainsi:

$$\forall t \in \mathbb{R}, f_1(t) = \operatorname{Re}(F(t)) = \frac{1}{125} e^t \left((25t^2 + 30t + 3)\cos(2t) - (-50t^2 + 40t - 46)\sin(2t) \right) \tag{5.32}$$

$$\forall t \in \mathbb{R}, f_2(t) = \operatorname{Im}(F(t)) = \frac{1}{125} e^t \left((25t^2 + 30t + 3)\sin(2t) + (-50t^2 + 40t - 46)\cos(2t) \right)$$
 (5.33)

IV Complément : règle de Bioche

On cherche l'intégrale d'une fraction rationnelle F en $\cos\theta$ et $\sin\theta$

$$\int_{a}^{b} F(\cos \theta, \sin \theta) \, \mathrm{d}\theta \tag{5.34}$$

- Si $F(\cos \theta, \sin \theta) d\theta$ (attention au $d\theta$!) est inchangé par $\theta \mapsto -\theta$, faire le changement de variable $u = \cos \theta$ peut être utile pour calculer l'intégrale.
- Si c'est inchangé par $\theta \mapsto \pi \theta$, faire le changement de variable $u = \sin \theta$
- Si c'est inchangé par $\theta \mapsto \pi + \theta$, faire le changement de variable $u = \tan \theta$