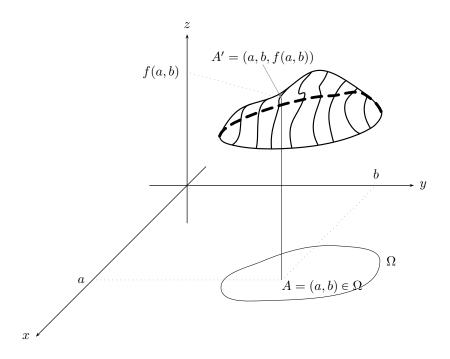


Chapitre 14 : Éléments de calcul différentiel

- On va s'attacher ici au cas des fonctions définies sur un ouvert Ω de \mathbb{R}^2 et à valeurs dans \mathbb{R} . (On peut adapter les résultats à d'autres cas si nécessaire)
- Les éléments de \mathbb{R}^2 seront vus parfois comme points ($A = (a, b) \in \mathbb{R}^2$) ou d'autres fois comme vecteurs ($\vec{u} = (h, k) \in \mathbb{R}^2$)
- $\|$ désigne une norme quelconque sur \mathbb{R}^2 .
- Visualisation :

Si $f \colon \Omega \longrightarrow \mathbb{R}$, on peut visualiser la situation en se représentant l'ensemble S des $(x,y) \longmapsto f(x,y)$ $(x,y,f(x,y)),(x,y) \in \Omega$, qui est une surface de \mathbb{R}^3 : c'est la nappe d'équation $z=f(x,y),(x,y) \in \Omega$.



S est à f ce qu'une courbe est à une fonction d'une variable dans \mathbb{R} .

I Dérivées partielles

A) Dérivées (éventuelles) partielles premières par rapport à chaque variable

Soit
$$f: \Omega \to \mathbb{R}$$
, soit $A = (a, b) \in \Omega$.
On pose $\Omega_{A,1} = \{x \in \mathbb{R}, (x, b) \in \Omega\}$, et $\varphi_{A,1}: \Omega_{A,1} \longrightarrow \mathbb{R}$
 $x \longmapsto f(x, b)$

Si $\varphi_{A,1}$ est dérivable en a, on dit que f admet une dérivée partielle première en A par rapport à la première variable, qui n'est autre que $\varphi'_{A,1}(a)$, qu'on note :

$$\begin{cases} \frac{\partial f}{\partial x}(A) & \text{ou encore } \begin{cases} D_1(f)(A) \\ D_1(f)(a,b) \end{cases} \end{cases}$$
De même, sous réserve d'existence :

 $\begin{cases} \frac{\partial f}{\partial y}(A) & \text{ou } \begin{cases} D_2(f)(A) \\ D_2(f)(a,b) \end{cases} \text{ est la dérivée en } b \text{ de l'application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \colon y \mapsto f(a,y), \text{ laquelle application } \varphi_{A,2} \mapsto f(a,y), \text{ laquelle application }$

Remarque:

 Ω étant un ouvert de \mathbb{R}^2 , $\Omega_{A,1}$ et $\Omega_{A,2}$ sont des ouverts de \mathbb{R} .

Ainsi, $\Omega_{A,1}$ est un voisinage de a, $\Omega_{A,2}$ un voisinage de b.

La notion de dérivabilité ne dépendant que de $\varphi_{A,1}$ (ou $\varphi_{A,2}$) au voisinage de a (ou de b), la notion de dérivée partielle de f en A est elle aussi locale.

Exemple:

$$f \colon \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto x^2 + xy + y$$

$$(14.1)$$

Alors f admet des dérivées partielles par rapport à x et y en tout point (x_0, y_0) de \mathbb{R}^2 , et:

$$\frac{\partial f}{\partial x}(x_0, y_0) = 2x_0 + y_0 \tag{14.2}$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = x_0 + 1 \tag{14.3}$$

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{xy}{x^2+y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

$$(14.4)$$

Soit $(x_0, y_0) \in \mathbb{R}^2 \setminus \{(0, 0)\}$. Alors, comme $\mathbb{R}^2 \setminus \{(0, 0)\}$ est un ouvert (complémentaire d'un singleton), c'est un voisinage de (x_0, y_0) . L'étude des dérivées partielles de f en (x_0, y_0) ne dépend que de fsur ce voisinage, et sur ce voisinage on a $f(x,y) = \frac{xy}{x^2 + y^2}$.

D'où on tire l'existence des dérivées partielles premières, et

$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{y_0(x_0^2 + y_0^2) - x_0 y_0(2x_0)}{(x_0^2 + y_0^2)^2} = \frac{y_0^3 - y_0 x_0^2}{(x_0^2 + y_0^2)^2}$$
(14.5)

$$\frac{\partial f}{\partial y}(x_0, y_0) = \frac{x_0^3 - x_0 y_0^2}{(x_0^2 + y_0^2)^2}$$
(14.6)

Étude en (0,0):

L'application partielle $x \mapsto f(x,0)$ est nulle, donc dérivable et de dérivée nulle en 0. Donc $\frac{\partial f}{\partial x}(0,0)$ existe et vaut 0.

De même, $\frac{\partial f}{\partial u}(0,0) = 0$.

Attention, f n'est pas pour autant continue en (0,0).

B) Définitions

Soit $f: \Omega \to \mathbb{R}$.

• Si $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial y}(x,y)$ sont définies en tout $(x,y)\in\Omega,$ on note :

$$\frac{\partial f}{\partial x} : \Omega \longrightarrow \mathbb{R} \quad \text{et} \quad \frac{\partial f}{\partial y} : \Omega \longrightarrow \mathbb{R} \quad .$$

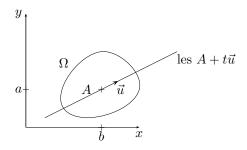
$$(x,y) \longmapsto \frac{\partial f}{\partial x}(x,y) \qquad (x,y) \longmapsto \frac{\partial f}{\partial y}(x,y)$$

• Si $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont définies et continues sur Ω , on dit que f est de classe \mathcal{C}^1 .

C) Dérivées partielles premières selon un vecteur

Soit $f: \Omega \to \mathbb{R}$.

Soit $\vec{u} = (h, k) \in \mathbb{R}^2 \setminus \{(0, 0)\}.$



Soit $A \in \Omega$, et $D = \{t \in \mathbb{R}, A + t\vec{u} \in \Omega\}$.

Si la fonction $\psi\colon D\longrightarrow \mathbb{R}$ est dérivable en 0, on dit que f admet une dérivée partielle $t\longmapsto f(A+t\vec{u})$ première en A selon le vecteur \vec{u} qui n'est autre que $\psi'(0)$. On la note $D_{A,\vec{u}}(f)$.

Remarque:

- Ici encore, la notion est locale...
- L'éventuelle dérivée partielle première en A selon $\vec{i} = (1,0)$ correspond à l'éventuelle dérivée partielle première en A selon la première variable.

Ainsi, sous réserve d'existence : $D_{A,\vec{i}}(f) = D_1(f)(A) = \frac{\partial f}{\partial x}(A)$

Et de même
$$D_{A,\vec{j}}(f)(A) = D_2(f)(A) = \frac{\partial f}{\partial y}(A)$$

En effet, sous réserve d'existence, $\frac{\partial f}{\partial x}(A)$ est la dérivée en a de $x\mapsto f(x,b)$ et $D_{A,\vec{i}}(f)(A)$ la dérivée en 0 de $t \mapsto f((a,b) + t(1,0)) = f(a+t,b)$.

Exemple:

$$f(x,y) = \begin{cases} 0 & \text{si } (x,y) = (0,0) \\ \frac{xy}{x^2 + y^2} & \text{sinon} \end{cases}$$
 (14.7)

Existe-t-il une dérivée partielle première en (0,0) selon le vecteur $\vec{u} = (1,1)$?

$$f(O+t\vec{u}) = f(t,t) = \begin{cases} \frac{t^2}{2t^2} = \frac{1}{2} & \text{si } t \neq 0 \\ 0 & \text{sinon} \end{cases}, \text{ donc } f \text{ n'est pas dérivable selon } \vec{u}.$$

II Développement limité à l'ordre 1 pour une fonction de classe

 \mathcal{C}^1

A) Le théorème

Théorème:

Soit $f: \Omega \to \mathbb{R}$ de classe C^1 . Soit $A = (a, b) \in \Omega$.

Alors il existe une fonction ε , définie sur l'ensemble $V = \{\vec{u} \in \mathbb{R}^2 A + \vec{u} \in \Omega\}$ telle que ε tend vers 0 en (0,0) et pour tout $\vec{u} \in V$, $f(A + \vec{u}) = f(A) + h \frac{\partial f}{\partial x}(A) + k \frac{\partial f}{\partial y}(A) + \|\vec{u}\| \varepsilon(\vec{u})$, où on a noté $\vec{u} = (h,k)$. Cette expression s'appelle le DL de f à l'ordre 1 en A.

Ou encore : $\forall (h,k) \in V, f(a+h,b+k) = f(a,b) + h \frac{\partial f}{\partial x}(a,b) + k \frac{\partial f}{\partial y}(a,b) + \|(h,k)\| \varepsilon(h,k)$ où $\lim_{(h,k)\to(0,0)} \varepsilon(h,k) = 0.$

Démonstration (hors programme):

On pose, pour tout $\vec{u} \in V$, $\varepsilon(\vec{u}) = \frac{1}{\|\vec{u}\|} \left(f(A + \vec{u}) - f(A) - h \frac{\partial f}{\partial x}(A) - k \frac{\partial f}{\partial y}(A) \right)$ si $\vec{u} \neq \vec{0}$, et $\varepsilon(\vec{u}) = 0$ sinon. Alors ε vérifie bien l'expression; reste à montrer que ε tend vers 0 en (0,0).

Comme Ω est ouvert, il existe $\mu > 0$ tel que $B_{\infty}(A, \mu) \subset \Omega$, où on a noté $B_{\infty}(\cdot, \cdot)$ une boule ouverte pour $\|\cdot\|_{\infty}$. Posons $W = \{\vec{u} \in \mathbb{R}^2, A + \vec{u} \in B_{\infty}(A, \mu)\}$. (Alors déjà $W \subset V$)

Alors pour tout $\vec{u} = (h, k)$ de W et tout $(t, \theta) \in [0, 1] \times [0, 1]$, $A + (th, \theta k) \in B_{\infty}(A, \mu)$.

En effet, soit $\vec{u} = (h, k) \in W$, et soit $(t, \theta) \in [0, 1] \times [0, 1]$.

Alors $\|(th, \theta k)\|_{\infty} = \max(|th|, |\theta k|) = \max(t|h|, \theta|k|) \leqslant \max(|h|, |k|) = \|\vec{u}\|_{\infty}$.

Or, $\vec{u} \in W$. Donc, si on note $B = A + \vec{u}$, on a $\|\overrightarrow{AB}\|_{\infty} < \mu$. Donc $\|(th, \theta k)\|_{\infty} \leq \|\overrightarrow{AB}\| < \mu$.

Donc $A + (th, \theta k) \in B_{\infty}(A, \mu)$.

Maintenant:

Soit $\vec{u} \in W$, on note $\vec{u} = (h, k)$:

$$f(a+h,b+k) - f(a,b) = f(a+h,b+k) - f(a+h,b) + f(a+h,b) - f(a,b)$$
(14.8)

((a+h,b)) est bien dans Ω , comme on vient de le voir, avec $(t,\theta)=(1,0)$)

On note $\psi: y \mapsto f(a+h,y)$ (donc ψ est une fonction réelle d'une variable réelle, c'est la deuxième application partielle associée à f en (a+h,b+k)), définie et dérivable sur [b,b+k].

Selon le théorème des accroissements finis appliqué à ψ entre b et b+k, il existe $\theta \in]0,1[$ tel que $\psi(b+k)-\psi(b)=k\psi'(b+\theta k)$, c'est-à-dire :

$$f(a+h,b+k) - f(a+h,b) = k \frac{\partial f}{\partial u}(a+h,b+\theta k)$$
(14.9)

De même, il existe $t \in]0,1[$ tel que $f(a+h,b)-f(a,b)=h\frac{\partial f}{\partial x}(a+th,b)$

Donc:

$$\forall \vec{u} \in W, \exists (t,\theta) \in]0,1[^2,f(a+h,b+k)-f(a,b) = k\frac{\partial f}{\partial u}(a+h,b+\theta k) + h\frac{\partial f}{\partial x}(a+th,b) \tag{14.10}$$

Or, $k \frac{\partial f}{\partial y}(a+h,b+\theta k) = k (\frac{\partial f}{\partial y}(a,b) + \alpha(h,k))$ où $\lim_{(0,0)} \alpha = 0$ car $\frac{\partial f}{\partial y}$ est continue en (0,0), et de même, $h \frac{\partial f}{\partial x}(a+th,b) = h (\frac{\partial f}{\partial x}(a,b) + \beta(h,k))$ où $\lim_{(0,0)} \beta = 0$.

Donc $f(a+h,b+k) = f(a,b) + k \frac{\partial f}{\partial y}(a,b) + h \frac{\partial f}{\partial x}(a,b) + h\beta(h,k) + k\alpha(h,k)$

Et pour tout $\vec{u} = (h, k) \in W \setminus \{(0, 0)\}$:

$$\varepsilon(h,k) = \frac{h\beta(h,k) + k\alpha(h,k)}{\|(h,k)\|_{\infty}} = \underbrace{\frac{h}{\max(|h|,|k|)}}_{\varepsilon[-1,1]} \beta(h,k) + \underbrace{\frac{k}{\max(|h|,|k|)}}_{\varepsilon[-1,1]} \alpha(h,k) \xrightarrow[(0,0)]{} 0 \tag{14.11}$$

Donc ε tend vers 0 en (0,0), d'où le résultat.

B) Conséquences

1. Si f est de classe C^1 sur Ω , alors elle est continue sur Ω .

En effet, pour tout $A = (a, b) \in \Omega$, on a :

$$\forall (h,k) \in V, f(a+h,b+k) = f(a,b) + \underbrace{h\frac{\partial f}{\partial x}(a,b) + k\frac{\partial f}{\partial y}(a,b) + \|(h,k)\|\varepsilon(h,k)}_{\rightarrow 0}$$
(14.12)

Donc $f(a+h,b+k) \xrightarrow{(h,k)\to(0,0)} f(a,b)$, donc f est continue en A.

2. Si f est de classe C^1 , alors pour tout $\vec{u} \in \mathbb{R}^2 \setminus \{(0,0)\}$ et tout $A \in \Omega$, $D_{A,\vec{u}}(f)$ est définie, et l'application $A \mapsto D_{A,\vec{u}}(f)$ est continue.

En effet :

Si f est de classe C^1 , alors, pour tout $A = (a, b) \in \Omega$, on a :

$$\forall (h,k) \in V, f(a+h,b+k) = f(a,b) + h \frac{\partial f}{\partial x}(a,b) + k \frac{\partial f}{\partial y}(a,b) + \|(h,k)\| \varepsilon(h,k)$$
(14.13)

Soit alors $\vec{u} = (\alpha, \beta) \in \mathbb{R}^2 \setminus \{(0, 0)\}.$

Alors, pour tout $t \in \mathbb{R}$ tel que $A + t\vec{u} \in \Omega$, c'est-à-dire tel que $t\vec{u} \in V$, on a :

$$f(A+t\vec{u}) = f(A) + t\alpha \frac{\partial f}{\partial x}(A) + t\beta \frac{\partial f}{\partial y}(A) + |t| \|\vec{u}\| \varepsilon(t\vec{u})$$
(14.14)

Donc $t\mapsto f(A+t\vec{u})$ est dérivable en 0, de dérivée $\alpha\frac{\partial f}{\partial x}(A)+\beta\frac{\partial f}{\partial y}(A)$

(puisque
$$\frac{f(A+t\vec{u})-f(A)}{t-0} = \alpha \frac{\partial f}{\partial x}(A) + \beta \frac{\partial f}{\partial y}(A) + \underbrace{\frac{|t|}{t} ||\vec{u}|| \varepsilon(t\vec{u})}_{\to 0})$$

C) Divers

Soit f de classe C^1 sur Ω .

On vient de voir que pour tout $\vec{u} \in \mathbb{R}^2 \setminus \{(0,0)\}$ et tout $A \in \Omega$, $D_{A,\vec{u}}(f)$ existe et vaut $\alpha \frac{\partial f}{\partial x}(A) + \beta \frac{\partial f}{\partial y}(A)$ lorsque $\vec{u} = (\alpha, \beta)$.

Pour A fixé dans Ω , l'application $\mathbb{R}^2 \longrightarrow \mathbb{R}$ est une forme linéaire sur $\vec{u} = (\alpha, \beta) \longmapsto \alpha \frac{\partial f}{\partial x}(A) + \beta \frac{\partial f}{\partial y}(A)$

 \mathbb{R}^2 , on la note $\mathrm{d}f_A$, différentielle de f en A. Ainsi, $\mathrm{d}f_A \in \mathcal{L}(\mathbb{R}^2, \mathbb{R})$

On introduit alors le vecteur $\vec{n} \in \mathbb{R}^2$ tel que cette forme linéaire soit $\vec{u} \mapsto \vec{u} \cdot \vec{n}$ (pour \mathbb{R}^2 muni de sa structure euclidienne naturelle)

Ce vecteur est appelé $\overrightarrow{\operatorname{grad}}_A f$, gradient de f en A.

Ainsi :
$$\forall \vec{u} = (h, k) \in \mathbb{R}^2$$
, $\mathrm{d}f_A(\vec{u}) = h \frac{\partial f}{\partial x}(A) + k \frac{\partial f}{\partial y}(A) = \underbrace{D_{A,\vec{u}}(f)}_{\mathrm{si}\ \vec{u} \neq (0,0)} = (\overrightarrow{\mathrm{grad}}_A f) \cdot \vec{u}$

Donc $\overrightarrow{\operatorname{grad}}_A f = \left(\frac{\partial f}{\partial x}(A), \frac{\partial f}{\partial y}(A)\right).$

On note $df_A = \frac{\partial f}{\partial x}(A) dx + \frac{\partial f}{\partial y}(A) dy$.

C'est-à-dire que dx et dy sont les formes linéaires $\mathbb{R}^2 \longrightarrow \mathbb{R}$ et $\mathbb{R}^2 \longrightarrow \mathbb{R}$. $(h,k) \longmapsto h$ $(h,k) \longmapsto k$

On peut considérer l'application $\Omega \longrightarrow \mathscr{L}(\mathbb{R}^2, \mathbb{R})$. $A \longmapsto \mathrm{d} f_A$

Cette application est notée df, et s'appelle la différentielle de f.

Ainsi, $df \in \mathscr{F}(\Omega, \mathscr{L}(\mathbb{R}^2, \mathbb{R}))$, et on peut noter $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$.

Récapitulatif $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \in \mathscr{F}(\Omega, \mathscr{L}(\mathbb{R}^2, \mathbb{R}))$, différentielle de f. $df_A = \frac{\partial f}{\partial x}(A) dx + \frac{\partial f}{\partial y}(A) dy \in \mathscr{L}(\mathbb{R}^2, \mathbb{R})$, différentielle de f en A.

$$df_A(\vec{u}) = \frac{\partial f}{\partial x}(A)h + \frac{\partial f}{\partial y}(A)k \in \mathbb{R}$$
(14.15)

Le DL à l'ordre 1 en A s'écrit alors :

$$f(A + \vec{u}) = f(A) + \underbrace{\mathrm{d}f_A(\vec{u})}_{(\overrightarrow{\mathrm{grad}}_A f) \cdot \vec{u}} + \|\vec{u}\| \varepsilon(\vec{u}) \qquad \text{où } \varepsilon(\vec{u}) \xrightarrow{\vec{u} \to (0,0)} 0$$
 (14.16)

Ainsi, $df_A(\vec{u})$ est une approximation linéaire de la différence $f(A + \vec{u}) - f(A)$

III Opérations sur les fonctions de classe \mathcal{C}^1

A) Sommes, produits...

Proposition:

Soient $f, g: \Omega \to \mathbb{R}$ de classe C^1 . Soit $\lambda \in \mathbb{R}$.

Alors les fonctions $\lambda f, f+g, fg$ sont de classe \mathcal{C}^1 sur Ω , et : $\frac{\partial(\lambda f)}{\partial x} = \lambda \frac{\partial f}{\partial x}, \frac{\partial(f+g)}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial x}$ et $\frac{\partial(fg)}{\partial x} = f \frac{\partial g}{\partial x} + g \frac{\partial f}{\partial x}$. Idem pour $\frac{\partial}{\partial y}$.

Démonstration:

Immédiat

Par exemple, pour fg:

Soit $(x_0, y_0) \in \Omega$. Les fonctions $\begin{cases} x \mapsto f(x, y_0) \\ x \mapsto g(x, y_0) \end{cases}$ sont dérivables en x_0 , de dérivées $\begin{cases} \frac{\partial f}{\partial x}(x_0, y_0) \\ \frac{\partial g}{\partial x}(x_0, y_0) \end{cases}$. Donc

 $x \mapsto f(x,y_0) \times g(x,y_0)$ est dérivable en x_0 , et sa dérivée en x_0 est :

$$f(x_0, y_0) \times \frac{\partial g}{\partial x}(x_0, y_0) + g(x_0, y_0) \times \frac{\partial f}{\partial x}(x_0, y_0)$$
(14.17)

Donc $\frac{\partial (fg)}{\partial x}$ est définie en tout point (x_0, y_0) de Ω , et $\frac{\partial (fg)}{\partial x} = f \frac{\partial g}{\partial x} + g \frac{\partial f}{\partial x}$.

Or, f, $\frac{\partial f}{\partial x}$, g et $\frac{\partial g}{\partial x}$ sont continues, donc $\frac{\partial (fg)}{\partial x}$ est continue sur Ω .

De même pour $\frac{\partial (fg)}{\partial y}$, donc fg est de classe C^1 .

Proposition:

Soit $f: \Omega \to \mathbb{R}$ de classe \mathcal{C}^1 .

Soit D un ouvert non vide de \mathbb{R} .

Soient u, v deux fonctions de D dans \mathbb{R} de classe \mathcal{C}^1 .

On suppose que $\forall t \in D, (u(t), v(t)) \in \Omega$.

Alors la fonction $F \colon D \longrightarrow \mathbb{R}$ $t \longmapsto f(u(t), v(t))$ est de classe C^1 , et :

$$\forall t \in D, F'(t) = u'(t) \frac{\partial f}{\partial x}(u(t), v(t)) + v'(t) \frac{\partial f}{\partial y}(u(t), v(t))$$
(14.18)

Démonstration:

Soit $t_0 \in D$. On étudie $\frac{F(t_0+h)-F(t_0)}{h}$ pour $h \neq 0$ tel que $t_0+h \in D$. On a :

$$F(t_{0} + h) - F(t_{0}) = f(u(t_{0} + h), v(t_{0} + h)) - f(u(t_{0}), v(t_{0}))$$

$$= \underbrace{(u(t_{0} + h) - u(t_{0}))}_{H} \frac{\partial f}{\partial x}(u(t_{0}), v(t_{0}))$$

$$+ \underbrace{(v(t_{0} + h) - v(t_{0}))}_{K} \frac{\partial f}{\partial y}(u(t_{0}), v(t_{0})) + \|(H, K)\|\varepsilon(H, K) \text{ où } \lim_{(x,y)\to(0,0)} \varepsilon(x,y) = 0$$

$$= (hu'(t_{0}) + h\alpha(h)) \frac{\partial f}{\partial x}(u(t_{0}), v(t_{0})) + (hv'(t_{0}) + h\beta(h)) \frac{\partial f}{\partial y}(u(t_{0}), v(t_{0})) + \|(H, K)\|\varepsilon(H, K)$$

$$(14.19)$$

Où $\alpha, \beta \xrightarrow[h \to 0]{} 0.$

$$\frac{F(t_{0} + h) - F(t_{0})}{h} = (u'(t_{0}) + \alpha(h)) \frac{\partial f}{\partial x} (u(t_{0}), v(t_{0})) + (v'(t_{0}) + \beta(h)) \frac{\partial f}{\partial y} (u(t_{0}), v(t_{0}))
+ \underbrace{\frac{|h|}{h}}_{\text{borné}} \underbrace{\|(u'(t_{0}) + \alpha(h), v'(t_{0}) + \beta(h))\|}_{\text{borné}} \varepsilon(H, K)$$
(14.20)

Et $\varepsilon(H,K) \xrightarrow[h \to 0]{} 0$

 $\operatorname{car} H = u(t_0 + h) - u(t_0) \xrightarrow[h \to 0]{} 0, K = v(t_0 + h) - v(t_0) \xrightarrow[h \to 0]{} 0$ et d'après le théorème de composition

Donc F est dérivable en t_0 , et on a bien la formule voulue, qui montre en plus que F' est continue (car $u, v, u', v', \frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ le sont...), donc que F est de classe C^1 .

Proposition:

Soit U un ouvert de \mathbb{R}^2 .

Soient u, v deux fonctions de U dans \mathbb{R} , de classe \mathcal{C}^1 .

On suppose que $\forall (x,y) \in U, (u(x,y),v(x,y)) \in \Omega$.

On peut donc considérer $F: U \longrightarrow \mathbb{R}$

$$\frac{\partial F}{\partial x} = \frac{\partial u}{\partial x}(x,y) \times \frac{\partial f}{\partial X}(u(x,y),v(x,y)) + \frac{\partial v}{\partial x}(x,y) \times \frac{\partial f}{\partial Y}(u(x,y),v(x,y)) \tag{14.21}$$

De même, $\frac{\partial F}{\partial y} = \frac{\partial u}{\partial y}(x,y) \times \frac{\partial f}{\partial X}(u(x,y),v(x,y)) + \frac{\partial v}{\partial y}(x,y) \times \frac{\partial f}{\partial Y}(u(x,y),v(x,y)).$

Démonstration:

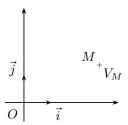
Soit $(x_0, y_0) \in D$. Alors $x \mapsto F(x, y_0)$, c'est-à-dire $x \mapsto f(u(x, y_0), v(x, y_0))$, est du type traité dans la proposition précédente.

Cette fonction est donc dérivable en x_0 , de dérivée :

$$\frac{\partial u}{\partial x}(x_0, y_0) \frac{\partial f}{\partial X}(u(x_0, y_0), v(x_0, y_0)) + \frac{\partial v}{\partial x}(x_0, y_0) \frac{\partial f}{\partial Y}(u(x_0, y_0), v(x_0, y_0))$$
(14.22)

D'où la première formule, et de même la deuxième et ainsi la classe de F.

Exemple (Gradient en coordonnées polaires):



On peut introduire la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ telle que pour tout $(x, y) \in \mathbb{R}^2$, f(x, y) est la valeur (en Volt) du potentiel au point M de coordonnées cartésiennes (x, y).

On peut aussi introduire $F: \mathbb{R}^2 \to \mathbb{R}$ telle que pour tout $(\rho, \theta) \in \mathbb{R}^2$, $F(\rho, \theta)$ est la valeur (en Volts) du potentiel au point M de coordonnées polaires (ρ, θ) .

Ainsi, pour tout $(\rho, \theta) \in \mathbb{R}^2$, $F(\rho, \theta) = f(\rho \cos \theta, \rho \sin \theta)$.

On a
$$\overrightarrow{\operatorname{grad}}_M V = \frac{\partial f}{\partial x}(x,y)\vec{i} + \frac{\partial f}{\partial y}(x,y)\vec{j}$$
 où $M(x,y)$.

On a, pour tout $(\rho, \theta) \in \mathbb{R}^2$:

$$\begin{cases} \frac{\partial F}{\partial \rho}(\rho, \theta) = \cos \theta \frac{\partial f}{\partial x}(\rho \cos \theta, \rho \sin \theta) + \sin \theta \frac{\partial f}{\partial y}(\rho \cos \theta, \rho \sin \theta) \\ \frac{\partial F}{\partial \theta}(\rho, \theta) = -\rho \sin \theta \frac{\partial f}{\partial x}(\rho \cos \theta, \rho \sin \theta) + \rho \cos \theta \frac{\partial f}{\partial y}(\rho \cos \theta, \rho \sin \theta) \end{cases}$$
(14.23a)

Donc:

$$\rho \frac{\partial f}{\partial x}(\rho \cos \theta, \rho \sin \theta) = \rho \cos \theta \frac{\partial F}{\partial \rho}(\rho, \theta) - \sin \theta \frac{\partial F}{\partial \theta}(\rho, \theta) \qquad (\rho \cos \theta (14.23a) - \sin \theta (14.23b)) \tag{14.24}$$

 Et

$$\rho \frac{\partial f}{\partial y}(\rho \cos \theta, \rho \sin \theta) = \rho \sin \theta \frac{\partial F}{\partial \rho}(\rho, \theta) + \cos \theta \frac{\partial F}{\partial \theta}(\rho, \theta) \qquad (\rho \sin \theta (14.23a) - \cos \theta (14.23b)) \tag{14.25}$$

Pour $M \neq O$, de coordonnées polaires (ρ, θ) :

$$\overrightarrow{\operatorname{grad}}_{M}V = \left[\cos\theta \frac{\partial F}{\partial \rho}(\rho, \theta) - \frac{\sin\theta}{\rho} \frac{\partial F}{\partial \theta}(\rho, \theta)\right] \vec{i} + \left[\sin\theta \frac{\partial F}{\partial \rho}(\rho, \theta) + \frac{\cos\theta}{\rho} \frac{\partial F}{\partial \theta}(\rho, \theta)\right] \vec{j} \\
= \frac{\partial F}{\partial \rho}(\rho, \theta) \vec{u}(\theta) + \frac{1}{\rho} \frac{\partial F}{\partial \theta}(\rho, \theta) \vec{v}(\theta) \tag{14.26}$$

Avec $\vec{u}(\theta) = \cos \theta \vec{i} + \sin \theta \vec{j}, \ \vec{v}(\theta) = \vec{u}(\frac{\pi}{2} - \theta).$

IV Généralisations

On a vu le cas des
$$\begin{cases} f\colon \Omega\subset\mathbb{R}^2\to\mathbb{R} \\ f\colon D\subset\mathbb{R}\to\mathbb{R} \end{cases}$$

On peut aisément adapter au cas $f \colon \Omega \subset \mathbb{R}^3 \to \mathbb{R}$, et même plus généralement à $f \colon \Omega \subset \mathbb{R}^p \to \mathbb{R}$.

On a vu aussi le cas des $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}^n$, où « tout va bien » composantes $t \longmapsto (f_1(t), f_2(t) \dots f_n(t))$ par composantes (sauf pour le théorème des accroissements finis, et donc la démonstration du théorème pour les développements limités – qui est quand même vrai, mais admis pour l'instant)

On peut donc parler des fonctions $f \colon \Omega \subset \mathbb{R}^p \to \mathbb{R}^n$ où « tout va bien » sur les composantes de l'arrivée.

Cas particulier:

Champ de vecteurs sur \mathbb{R}^3 :

C'est une fonction
$$F\colon \Omega \longrightarrow \mathbb{R}^3$$
 où Ω est un ouvert de \mathbb{R}^3 $(x,y,z) \longmapsto (X(x,y,z),Y(x,y,z),Z(x,y,z))$

F est de classe \mathcal{C}^1 si et seulement si X, Y, Z le sont, et :

$$\frac{\partial F}{\partial x}(x,y,z) = \left(\frac{\partial X}{\partial x}(x,y,z), \frac{\partial Y}{\partial x}(x,y,z), \frac{\partial Z}{\partial x}(x,y,z)\right)$$
(14.27)

On a alors le théorème : Toute composée bien définie de fonctions de classes C^1 est de classe C^1 , et formules à adapter...

Exemple:

Si $G(r, \theta, z) = F(r \cos \theta, r \sin \theta, z)$, alors :

$$\frac{\partial G}{\partial r}(r,\theta,z) = \cos\theta \frac{\partial F}{\partial x}(r\cos\theta,r\sin\theta,z) + \sin\theta \frac{\partial F}{\partial y}(r\cos\theta,r\sin\theta,z) + 0 \times \frac{\partial F}{\partial z}(r\cos\theta,r\sin\theta,z)
\frac{\partial G}{\partial \theta}(r,\theta,z) = -r\sin\theta \frac{\partial F}{\partial x}(r\cos\theta,r\sin\theta,z) + r\cos\theta \frac{\partial F}{\partial y}(r\cos\theta,r\sin\theta,z)
\frac{\partial G}{\partial z}(r,\theta,z) = \frac{\partial F}{\partial z}(r\cos\theta,r\sin\theta,z)$$
(14.28)

De même, si $H(r,\theta,\varphi)=F(r\sin\theta\cos\varphi,r\sin\theta\sin\varphi,r\cos\theta)$:

$$\frac{\partial H}{\partial r}(r,\theta,\varphi) = \sin\theta\cos\varphi \frac{\partial F}{\partial x}(r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta)
+ \sin\theta\sin\varphi \frac{\partial F}{\partial y}(r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta)
+ \cos\theta \frac{\partial F}{\partial z}(r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta)
+ \cos\theta\cos\varphi \frac{\partial F}{\partial z}(r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta)
+ r\cos\theta\sin\varphi \frac{\partial F}{\partial y}(r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta)
+ r\cos\theta\sin\varphi \frac{\partial F}{\partial z}(r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta)
- r\sin\theta \frac{\partial F}{\partial z}(r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta)
+ r\sin\theta\cos\varphi \frac{\partial F}{\partial x}(r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta)
+ r\sin\theta\cos\varphi \frac{\partial F}{\partial y}(r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta)
+ r\sin\theta\cos\varphi \frac{\partial F}{\partial y}(r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta)$$

V Dérivées partielles d'ordre supérieur

Définition:

Soit $f: \Omega \to \mathbb{R}$. Soit $(x_0, y_0) \in \Omega$.

- Si $\frac{\partial f}{\partial x}$ est définie au voisinage de (x_0, y_0) , et si $\frac{\partial f}{\partial x}$ est dérivable par rapport à x (1ère variable) en ce point, la dérivée $\frac{\partial^2 f}{\partial x}(x_0, y_0)$ est notée $\frac{\partial^2 f}{(\partial x)^2}(x_0, y_0)$.
- De même, sous réserve d'existence, $\frac{\partial^2 f}{(\partial y)(\partial x)}(x_0, y_0) = \frac{\partial \frac{\partial f}{\partial x}}{\partial y}(x_0, y_0)$,
- Et $\frac{\partial^2 f}{(\partial x)(\partial y)}(x_0, y_0) = \frac{\partial \frac{\partial f}{\partial y}}{\partial x}(x_0, y_0)$
- Et $\frac{\partial^2 f}{(\partial y)^2}(x_0, y_0) = \frac{\partial \frac{\partial f}{\partial y}}{\partial y}(x_0, y_0).$

Généralisation récurrente Soit $p \ge 2$.

Sous réserve d'existence, les dérivées p-ièmes de f en (x_0, y_0) sont les deux dérivées premières de chacune des dérivées (p-1)-ièmes de f en (x_0, y_0) .

Définition:

Soit $f: \Omega \to \mathbb{R}$. Si les quatre dérivées partielles secondes de f sont définies et continues sur Ω , on dit que f est de classe \mathcal{C}^2 .

Plus généralement, si les 2^k dérivées partielles d'ordre k sont définies et continues sur Ω , on dit que f est de classe \mathcal{C}^k .

Proposition:

Pour $k \ge 1$, si f est de classe \mathcal{C}^k , alors f est de classe \mathcal{C}^{k-1} (où \mathcal{C}^0 signifie « f est continue »)

En effet : Si f est de classe C^k , alors les dérivées partielles (k-1)-ièmes de f ont leurs dérivées partielles premières continues (puisque ce sont les dérivées partielles k-ièmes de f), et sont donc de classe C^1 . Donc ces dérivées partielles (k-1)-ièmes sont continues, donc f est de classe C^{k-1} .

Théorème (Théorème de Schwarz – admis):

- Si f est de classe C^2 sur Ω , alors $\frac{\partial^2 f}{(\partial x)(\partial y)} = \frac{\partial^2 f}{(\partial y)(\partial x)}$.
- Plus généralement, si f est de classe \mathcal{C}^k sur Ω , alors les dérivées partielles d'ordre k ne dépendent que du nombre de dérivations par rapport à chaque variable.

On peut élargir aisément les définitions aux fonctions de Ω , ouvert de \mathbb{R}^p , dans \mathbb{R}^n , où le théorème de Schwarz reste encore vrai.

Et de plus les opérations sur les fonctions de classe \mathcal{C}^k sont toujours valables...

Remarque:

On n'a besoin que de la composition :

Par exemple, si f et g sont deux fonctions de \mathbb{R}^2 dans \mathbb{R} de classe \mathcal{C}^1 , on a :

$$F \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 est de classe \mathcal{C}^1 , et $S \colon \mathbb{R}^2 \longrightarrow \mathbb{R}$ est de classe \mathcal{C}^1 , donc $(x,y) \longmapsto (f(x,y),g(x,y))$ $(u,v) \longmapsto u+v$ $S \circ F$ est de classe \mathcal{C}^1 , et on a $S \circ F = f+g$.

VI Extremums

Théorème:

Soit $f: \Omega \to \mathbb{R}$, où Ω est un ouvert de \mathbb{R}^2 , de classe \mathcal{C}^1 . Soit $A = (a, b) \in \Omega$.

Si f présente un extremum (local) en A, alors $\frac{\partial f}{\partial x}(A) = \frac{\partial f}{\partial y}(A) = 0$.

La réciproque reste ici encore fausse (exemple : configuration en col, ou $(x,y) \mapsto xy$)

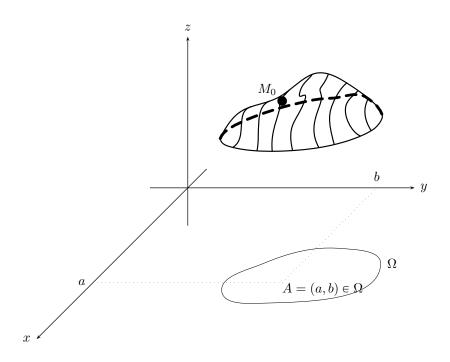
Démonstration:

Supposons que f présente un maximum local en A. Il existe alors un voisinage V de A contenu dans Ω

Alors $x \mapsto f(x,b)$ présente un maximum local en a, et est dérivable sur $]a - \varepsilon, a + \varepsilon[$. La dérivée de cette fonction est donc nulle en a, c'est-à-dire $\frac{\partial f}{\partial x}(a,b) = 0$.

Et, de même, $\frac{\partial f}{\partial y}(a,b) = 0$.

VII Notion de plan tangent à une surface d'équation z = f(x, y)



Soit $f: \Omega \to \mathbb{R}$ de classe \mathcal{C}^1 , notons S la surface d'équation z = f(x, y).

Soit $A = (a, b) \in \Omega$, $M_0 = (a, b, f(a, b)) \in S$.

On sait que, pour tout $(x, y) \in \Omega$, on a :

$$f(x,y) = f(a,b) + (x-a)\frac{\partial f}{\partial x}(a,b) + (y-b)\frac{\partial f}{\partial y}(a,b) + \|(x-a,y-b)\|\varepsilon(x-a,y-b)$$
(14.30)

où $\varepsilon \xrightarrow[(a,b)]{} 0.$

Par définition, le plan tangent en M_0 à S est le plan d'équation :

$$z = f(a,b) + (x-a)\frac{\partial f}{\partial x}(a,b) + (y-b)\frac{\partial f}{\partial y}(a,b)$$
(14.31)

C'est le plan qui approxime le mieux la surface au voisinage du point considéré.

Considérons les deux courbes C_1 et C_2 tracées sur S de la manière suivante : $C_1 = \{(x, b, f(x, b)), x \in \Omega_{A,1}\}$ et $C_2 = \{(a, y, f(a, y)), y \in \Omega_{A,2}\}$

Où
$$\Omega_{A,1}=\{x\in\mathbb{R},(x,b)\in\Omega\}$$
 et $\Omega_{A,2}=\{y\in\mathbb{R},(a,y)\in\Omega\}.$

$$C_1 \text{ est naturellement paramétrée par } M \begin{vmatrix} x = t \\ y = b \\ z = f(t,b) \end{vmatrix}$$

$$Vitesse: \vec{v}_1(t) \begin{vmatrix} x = 1 \\ y = 0 \\ z = \frac{\partial f}{\partial x}(t,b) \end{vmatrix}$$

$$Et, \text{ au point considéré, } \vec{v}_1(a) \begin{vmatrix} x = 1 \\ y = 0 \\ z = \frac{\partial f}{\partial x}(a,b) \end{vmatrix}$$

$$Et = 0$$

$$Et =$$

De même, sur
$$C_2$$
, $\vec{v}_2(b)$ $\begin{vmatrix} x=0\\y=1\\z=\frac{\partial f}{\partial y}(a,b) \end{vmatrix}$

Alors $(\vec{v}_1(a), \vec{v}_2(b))$ forme une base de la direction du plan tangent en M_0 , c'est-à-dire du plan vectoriel d'équation $z=x\frac{\partial f}{\partial x}(a,b)+y\frac{\partial f}{\partial u}(a,b).$

VIII Courbes de \mathbb{R}^2 .

On se place ici dans le repère canonique de \mathbb{R}^2 .

A) Diverses situations

• En coordonnées cartésiennes :

1a.
$$y = f(x)$$
 (résolue en y)

2a.
$$x = f(y)$$
 (résolue en x)

3a.
$$F(x,y) = 0$$
 où $F: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ (non résolue)

4a. Paramétrique :
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}, t \in \dots$$

• En coordonnées polaires :

1b.
$$\rho = f(\theta)$$

2b.
$$\theta = f(\rho)$$

3b.
$$F(\rho, \theta) = 0$$

4b. Paramétrique :
$$\begin{cases} \rho = r(t) \\ \theta = \alpha(t) \end{cases}, t \in \dots$$

• Passage d'une situation à une autre :

- ♦ Passage de 1a. à 3a. / 2a. à 3a. : évident. (idem avec b)
- ♦ Passage de 1a. à 4a. / 2a. à 4a. : évident. (idem avec b)

$$\diamond \text{ Passage de 4b. à 4a. : } \begin{cases} x = r(t)\cos(\alpha(t)) \\ y = r(t)\sin(\alpha(t)) \end{cases}$$

♦ Pour le passage de 3a. à 1a. ou 2a., on n'a pas de méthode systématique, mais on a un théorème.

B) Théorème des fonctions implicites

Théorème (admis):

Soit Ω un ouvert de \mathbb{R}^2 .

Soit $F: \Omega \to \mathbb{R}$, de classe \mathcal{C}^1 .

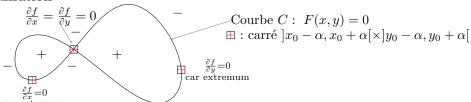
On suppose qu'il existe $(x_0, y_0) \in \Omega$ tel que $F(x_0, y_0) = 0$.

Si $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$, alors l'équation F(x, y) = 0 définit localement y comme fonction de x, c'est-à-dire qu'il existe $\alpha > 0$ tel que pour tout $x \in]x_0 - \alpha, x_0 + \alpha[$, il existe un unique $y \in]y_0 - \alpha, y_0 + \alpha[$ tel que F(x,y) = 0.

Et de plus, si on note $\varphi:]x_0 - \alpha, x_0 + \alpha[\longrightarrow \mathbb{R}$ $x \longmapsto \text{l'unique } y \in]y_0 - \alpha, y_0 + \alpha[\text{tel que } F(x,y) = 0 \text{ tel que } F(x,y) = 0 \text{ tel$

voisinage de x_0 , et $\varphi'(x_0) = -\frac{\frac{\partial F}{\partial x}(x_0, y_0)}{\frac{\partial F}{\partial y}(x_0, y_0)}$. On adapte le théorème pour $\frac{\partial F}{\partial x}(x_0, y_0) \neq 0$

Visualisation



Justification que $\varphi'(x_0) = -\frac{\frac{\partial F}{\partial x}(x_0, y_0)}{\frac{\partial F}{\partial y}(x_0, y_0)}$: On a, pour tout $x \in]x_0 - \alpha, x_0 + \alpha[\times]y_0 - \alpha, y_0 + \alpha[, F(x, \varphi(x)) = 0]$

Donc, en dérivant : $1\frac{\partial F}{\partial x}(x_0, \underbrace{\varphi(x_0)}_{y_0}) + \varphi'(x_0)\frac{\partial F}{\partial y}(x_0, \underbrace{\varphi(x_0)}_{y_0}) = 0.$

Application:

Tangente à C: F(x,y) = 0 en un point (x_0,y_0) où $\frac{\partial F}{\partial x}$ et $\frac{\partial F}{\partial y}$ sont non tous deux nuls. Supposons par exemple $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$.

Ainsi, localement, la courbe se résout en $C: y = \varphi(x) \rightarrow$.

La tangente en (x_0, y_0) a alors pour équation $(y - y_0) = (x - x_0)\varphi'(x_0)$

C'est-à-dire $(x-x_0)\frac{\partial F}{\partial x}(x_0,y_0)+(y-y_0)\frac{\partial F}{\partial y}(x_0,y_0)=0$

Ainsi, si $\overrightarrow{\operatorname{grad}}_{(x_0,y_0)}F \neq \vec{0}$, alors la tangente à C en (x_0,y_0) existe et est orthogonale à $\overrightarrow{\operatorname{grad}}_{(x_0,y_0)}F$.

C) Passage local de représentation paramétrique à résolu en x ou y

Proposition:

Soit C le support d'un arc paramétré $\begin{cases} x = \alpha(t) \\ y = \beta(t) \end{cases}, t \in I \text{ où } \alpha, \beta \text{ sont de classe } \mathcal{C}^1 \text{ au moins, et on suppose } t \in \mathcal{C}^1$

l'arc régulier (c'est-à-dire que $\vec{v}(t)\begin{pmatrix}\alpha'(t)\\\beta'(t)\end{pmatrix}$ ne s'annule pas)

Soit $t_0 \in I$ (qu'on suppose ouvert). Si par exemple $\alpha'(t_0) \neq 0$, alors il existe un voisinage V_0 de t_0 tel que le support de l'arc paramétré restreint à V_0 , c'est-à-dire l'arc $\begin{cases} x = \alpha(t) \\ y = \beta(t) \end{cases}$, $t \in V_0$, admette une équation du type y = f(x).

Démonstration:

 α est de classe \mathcal{C}^1 , et $\alpha'(t_0) \neq 0$. Il existe donc un voisinage $V =]t_0 - \lambda, t_0 + \lambda[$ de t_0 tel que $\forall t \in V, \alpha'(t) \neq 0$. Donc α est strictement monotone, et réalise donc une bijection sur un intervalle W dont la réciproque est de même classe que α . Donc l'arc restreint à V admet le paramétrage $\begin{cases} x = \alpha(\alpha^{-1}(u)) \\ y = \beta(\alpha^{-1}(u)) \end{cases}, u \in W,$ c'est-à-dire $\begin{cases} x = u \\ y = f(u) \end{cases}, u \in W \text{ où } f = \beta \circ \alpha^{-1}.$

D) De paramétré en cartésiennes à paramétré en polaires

Soit
$$C$$
:
$$\begin{cases} x = \alpha(t) \\ y = \beta(t) \end{cases}, t \in I \text{ où } \alpha, \beta \text{ sont de classe } \mathcal{C}^k \ (k \geqslant 1)$$

On suppose que C ne passe pas par O.

Alors C admet une représentation paramétrique en coordonnées polaires du type $\begin{cases} \rho = r(t) \\ \theta = \lambda(t) \end{cases}, t \in I,$ r et λ étant de classe C^k .

En effet, pour tout $t \in I$:

$$\overrightarrow{OM}(t) = \alpha(t)\overrightarrow{i} + \beta(t)\overrightarrow{j} = \underbrace{\sqrt{\alpha^2(t) + \beta^2(t)}}_{r(t)} \underbrace{\left(\frac{\alpha(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{i} + \frac{\beta(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{j}\right)}_{=\cos(\lambda(t))\overrightarrow{i} + \sin(\lambda(t))\overrightarrow{j} \text{ où } \lambda \text{ est de}}_{\text{closes}} \underbrace{\left(\frac{\beta(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{i} + \frac{\beta(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{j}\right)}_{=\cos(\lambda(t))\overrightarrow{i} + \sin(\lambda(t))\overrightarrow{j} \text{ où } \lambda \text{ est de}}_{\text{closes}} \underbrace{\left(\frac{\beta(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{i} + \frac{\beta(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{j}\right)}_{=\cos(\lambda(t))\overrightarrow{i} + \sin(\lambda(t))\overrightarrow{j} \text{ où } \lambda \text{ est de}}_{\text{closes}} \underbrace{\left(\frac{\beta(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{i} + \frac{\beta(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{j}\right)}_{=\cos(\lambda(t))\overrightarrow{i} + \sin(\lambda(t))\overrightarrow{j} \text{ où } \lambda \text{ est de}}_{\text{closes}} \underbrace{\left(\frac{\beta(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{i} + \frac{\beta(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{j}\right)}_{=\cos(\lambda(t))\overrightarrow{i} + \sin(\lambda(t))\overrightarrow{j} \text{ où } \lambda \text{ est de}}_{\text{closes}} \underbrace{\left(\frac{\beta(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{i} + \frac{\beta(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{j}\right)}_{=\cos(\lambda(t))\overrightarrow{i} + \sin(\lambda(t))\overrightarrow{j} \text{ où } \lambda \text{ est de}}_{\text{closes}} \underbrace{\left(\frac{\beta(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{j} + \frac{\beta(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{j}\right)}_{=\cos(\lambda(t))\overrightarrow{i} + \sin(\lambda(t))\overrightarrow{j} \text{ où } \lambda \text{ est de}}_{\text{closes}} \underbrace{\left(\frac{\beta(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{j} + \frac{\beta(t)}{\sqrt{\alpha^2(t) + \beta^2(t)}} \overrightarrow{j}\right)}_{=\cos(\lambda(t))\overrightarrow{i} + \sin(\lambda(t))\overrightarrow{j} + \cos(\lambda(t))\overrightarrow{j} + \cos(\lambda(t))\overrightarrow$$

(C'est possible car $(\alpha(t), \beta(t)) \neq (0, 0)$)

IX Surfaces de \mathbb{R}^3

A) Diverses représentations (en coordonnées cartésiennes)

- Équations du type z = f(x, y), y = f(x, z) ou x = f(y, z) (résolues)
- Équations non résolues : F(x, y, z) = 0

Exemple:

- \diamond Plan d'équation ax + by + cz + d = 0 où $(a, b, c) \neq (0, 0, 0)$
- \Rightarrow Sphère $(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = R^2$
- Paramétrage de surface :

$$\begin{cases} x = \alpha(t,s) \\ y = \beta(t,s) , (t,s) \text{ décrivant un domaine } D \text{ de } \mathbb{R}^2, \alpha, \beta, \gamma \text{ de classe } \mathcal{C}^k, k \geqslant 1 \text{ avec} \begin{pmatrix} \frac{\partial \alpha}{\partial t} \\ \frac{\partial \beta}{\partial t} \\ \frac{\partial \gamma}{\partial t} \end{pmatrix} \text{ et } \begin{pmatrix} \frac{\partial \alpha}{\partial s} \\ \frac{\partial \beta}{\partial s} \\ \frac{\partial \gamma}{\partial s} \end{pmatrix}$$

indépendants (sinon on n'obtient pas une surface)

B) Passage local de représentation F(x, y, z) = 0 à une équation résolue

(Et donc passage ensuite à une représentation paramétrique)

Théorème (Théorème des fonctions implicites):

Soit F de classe C^k , $k \ge 1$ sur \mathbb{R}^3 . Soit $M_0 = (x_0, y_0, z_0)$ tel que $F(x_0, y_0, z_0) = 0$. Si $\frac{\partial F}{\partial z}(M_0) \ne 0$, alors, au voisinage de M_0 , l'équation F(x, y, z) = 0 définit z comme fonction de x et y, cette fonction φ est de classe C^k et on a :

$$\frac{\partial \varphi}{\partial x}(x_0, y_0) = -\frac{\frac{\partial F}{\partial x}(x_0, y_0, z_0)}{\frac{\partial F}{\partial z}(x_0, y_0, z_0)}, \qquad \frac{\partial \varphi}{\partial y}(x_0, y_0) = -\frac{\frac{\partial F}{\partial y}(x_0, y_0, z_0)}{\frac{\partial F}{\partial z}(x_0, y_0, z_0)}$$
(14.33)

(Même justification pour les dérivées que pour \mathbb{R}^2)

C) Plan tangent à une surface

• Soit S: $\begin{cases} x = \alpha(t,s) \\ y = \beta(t,s) , & (t,s) \in \Omega \text{ ouvert de } \mathbb{R}^2. \\ z = \gamma(t,s) \end{cases}$ La fonction $\vec{P}: \Omega \longrightarrow \mathbb{R}^3$ est de classe \mathcal{C}^k , avec $k \geqslant 1$ et $\frac{\partial \vec{P}}{\partial u}(u,v)$,

 $\frac{\partial \vec{P}}{\partial x}(u,v)$ sont indépendants

Soit $M_0 \in S$ de paramètre (u_0, v_0) .

Courbes tracées sur S passant par $M_0:C_1:$ $\begin{cases} x=\alpha(u,v_0)\\ y=\beta(u,v_0)\;,u\in\Omega_{M_0,1} \text{ passe par le point } M_0 \text{ au}\\ z=\gamma(u,v_0) \end{cases}$

paramètre $u = u_0$

$$C_2: \begin{cases} x=\alpha(u_0,v)\\ y=\beta(u_0,v) \ , v\in \Omega_{M_0,2} \text{ passe par } M_0 \text{ au point de paramètre } v=v_0.\\ z=\gamma(u_0,v) \end{cases}$$

Les deux vecteurs $\vec{v}_1(u_0)\begin{vmatrix} \frac{\partial \alpha}{\partial u}(u_0, v_0) \\ \frac{\partial \beta}{\partial u}(u_0, v_0) \\ \frac{\partial \beta}{\partial v}(u_0, v_0) \end{vmatrix} = \vec{v}_2(v_0)\begin{vmatrix} \frac{\partial \alpha}{\partial v}(u_0, v_0) \\ \frac{\partial \beta}{\partial v}(u_0, v_0) \\ \frac{\partial \beta}{\partial v}(u_0, v_0) \end{vmatrix}$ sont donc indépendants. Le plan tangent $\frac{\partial \gamma}{\partial v}(u_0, v_0)$

à S en M_0 est le plan passant par M_0 et de direction $(\vec{v}_1(u_0), \vec{v}_2(v_0))$ (et de vecteur normal $\vec{v}_1(u_0) \wedge \vec{v}_2(v_0)$) $\vec{v}_2(v_0)$, c'est-à-dire $\frac{\partial \vec{P}}{\partial u}(u_0, v_0) \wedge \frac{\partial \vec{P}}{\partial v}(u_0, v_0)$)

Remarque: Remarque : $\begin{cases} x = \alpha(u(t), v(t)) \\ y = \beta(u(t), v(t)), \text{ où } \end{cases}$ Les autres courbes tracées sur la surface sont les courbes de la forme C: $\begin{cases} x = \alpha(u(t), v(t)) \\ y = \beta(u(t), v(t)), \text{ où } \end{cases}$ $u, v \colon \mathbb{R} \to \mathbb{R}$, de classe suffisante.

$$\vec{v}(t) \begin{vmatrix} u'(t)\frac{\partial \alpha}{\partial u}(u(t), v(t)) + v'(t)\frac{\partial \alpha}{\partial v}(u(t), v(t)) \\ u'(t)\frac{\partial \beta}{\partial u}(u(t), v(t)) + v'(t)\frac{\partial \beta}{\partial v}(u(t), v(t)) \\ u'(t)\frac{\partial \gamma}{\partial u}(u(t), v(t)) + v'(t)\frac{\partial \gamma}{\partial v}(u(t), v(t)) \end{vmatrix}$$
(14.34)

Soit $t_0 \in \mathbb{R}$, on suppose que $(u(t_0), v(t_0)) = (u_0, v_0)$.

Ainsi, $\vec{v}(t_0) = u'(t_0)\vec{v}_1(u_0) + v'(t_0)\vec{v}_2(v_0)$, donc $\vec{v}(t_0)$ est dans la direction du plan tangent à M_0 .

• Cas où S: F(x, y, z) = 0.

Soit $M_0=(x_0,y_0,z_0)\in S$. On suppose que $\overrightarrow{\operatorname{grad}}_{M_0}F\neq \vec{0}$, c'est-à-dire que l'une des dérivées partielles n'est pas nulle.

Donc selon le théorème des fonctions implicites, on a localement une paramétrisation de S: $\begin{cases} x = \alpha(u, v) \\ y = \beta(u, v), \text{ passant en } M_0, \text{ disons au point de paramètre } (u_0, v_0). \\ z = \gamma(u, v) \end{cases}$

Or, on a $F(\alpha(u, v), \beta(u, v), \gamma(u, v)) = 0$. Dono

$$\frac{\partial \alpha}{\partial u}(u,v)\frac{\partial F}{\partial x}(\alpha(u,v),\beta(u,v),\gamma(u,v)) + \frac{\partial \alpha}{\partial u}(u,v)\frac{\partial F}{\partial y}(\alpha(u,v),\beta(u,v),\gamma(u,v)) + \frac{\partial \alpha}{\partial u}(u,v)\frac{\partial F}{\partial z}(\alpha(u,v),\beta(u,v),\gamma(u,v)) = 0$$
(14.35)

 Et

$$\frac{\partial \alpha}{\partial v}(u,v)\frac{\partial F}{\partial x}(\alpha(u,v),\beta(u,v),\gamma(u,v)) + \frac{\partial \alpha}{\partial v}(u,v)\frac{\partial F}{\partial y}(\alpha(u,v),\beta(u,v),\gamma(u,v)) + \frac{\partial \alpha}{\partial v}(u,v)\frac{\partial F}{\partial z}(\alpha(u,v),\beta(u,v),\gamma(u,v)) = 0$$
(14.36)

Donc \vec{v}_1 et \vec{v}_2 sont orthogonaux à $\overrightarrow{\text{grad}}_{M_0}F$, et sont indépendants.

Ainsi, le plan tangent à S en $M_0(x_0, y_0, z_0)$ est le plan passant par M_0 orthogonal à $\overrightarrow{\text{grad}}_{M_0} F$, c'est-à-dire d'équation :

$$\frac{\partial F}{\partial x}(M_0)(x-x_0) + \frac{\partial F}{\partial y}(M_0)(y-y_0) + \frac{\partial F}{\partial z}(M_0)(z-z_0) = 0$$
(14.37)

Ou encore $dF_{M_0}(x - x_0, y - y_0, z - z_0) = 0.$

Ainsi, par exemple:

Si $S: 2x^2 + 5z^2 + 3y^2 - 3 = 0$, et si $M_0(x_0, y_0, z_0)$ est un point de S.

Équation du plan tangent à S en M_0 :

$$F(x, y, z) = 2x^{2} + 3y^{2} + 5z^{2} - 3$$
(14.38)

$$dF_{(x,y,z)} = 6x dx + 6y dy + 10z dz$$
(14.39)

(On vérifie en effet immédiatement que l'application $F \mapsto dF$ est linéaire)

L'équation du plan tangent est donc $5x_0(x - x_0) + 6y_0(y - y_0) + 10z_0(z - z_0) = 0$.