Chapitre 3 : Propriétés thermoélastiques des gaz réels, phases condensées

I Gaz réels aux faibles pressions

A) Isothermes des gaz réels aux faibles pressions

Isotherme : transformation réalisée à température constante.

Bain thermostaté à T

Paroi diathermique (perméable à la chaleur)

n moles de gaz réel

Piston

A T constante, on étudie $P(V)$.

Diagramme de Clapeyron :

P $\rightarrow V$

$T' > T$

On remarque que la courbe a l'allure d'une hyperbole.

Diagramme d'Amagat :

$P V$ $\rightarrow P$

T'

T

B) Lois de Boyle–Mariotte et Avogadro–Ampère

A priori, PV dépend de P, T, n_{moles}, de la nature du gaz.

Loi de Boyle–Mariotte :

Aux pressions évanouissantes ($P \rightarrow 0$), PV ne dépend plus de P. Les isothermes d'Amagat sont donc des portions de droites horizontales.
Loi d’Avogadro-Ampère :
A \(P, T \) identiques, les volumes égaux de gaz différents contiennent le même nombre de moles (toujours dans le domaine des faibles pressions).

Gaz 1 : \(P_1, V_1, T_1, \text{gaz}_1, n_1 \)
Gaz 2 : \(P_2, V_2, T_2, \text{gaz}_2, n_2 \)
Ainsi, \(P_1 = P_2, V_1 = V_2, T_1 = T_2 \Rightarrow n_1 = n_2 \).
Donc \(PV(T_1, \text{gaz}_1, n_1) = PV(T_2, \text{gaz}_2, n_2) \). \(PV \) est donc indépendant de la nature du gaz utilisé, et \(PV(n, T) = n \times f(T) \) (\(PV \) est extensif, car \(V \) l’est).

C) Thermomètre à gaz parfait, température légale

A \(n \) fixé, \(PV \) ne dépend que de la température. On peut donc définir une température \(T_{GP} = \frac{PV}{n \times cte} \). On calcule la constante telle que :

\[
T_{GP} (\text{eau}_{\text{vapeur}} / \text{eau}_{\text{liquide}}) / 1 \text{Atm} = T_{GP} (\text{eau}_{\text{liquide}} / \text{eau}_{\text{solide}}) / 1 \text{Atm} = 100 \text{K}
\]
La constante vaut alors \(R = 8,314 \text{J.K}^{-1}.\text{mol}^{-1} \)
Donc \(T_{GP} = \frac{PV}{nR} \) ou \(PV = nRT_{GP} \). Donc \(T_{GP} = T_{\text{cinétique}} = T \) (température absolue)

D) Propriétés thermodynamiques des gaz parfaits ou réels à faible pression

1) Volume molaire normal

\[
PV = nRT
\]
Dans les CNTP, avec une mole de gaz :

\(T = 273,15 \text{K} \); \(P = 1 \text{Atm} = 1,01325.10^5 \text{Pa} \)

On a alors \(V = 22,414 \text{L} \) (volume molaire normal)

2) Mélange idéal de gaz parfaits

Une enceinte de volume \(V \) à la température \(T \), plusieurs gaz \(i \) de \(n_i \) moles.
Pression partielle du gaz \(n^o i \) : \(P_i = n_i \frac{RT}{V} \).
Mélange idéal de gaz parfaits : \(P = \sum_i P_i = \frac{RT}{V} \sum_i n_i \) (Loi de Dalton).
Donc \(PV = nRT \) avec \(n = \sum_i n_i \)
Un mélange idéal de gaz parfaits est donc un gaz parfait avec \(\sum_i n_i \) moles.
Fraction molaire du gaz \(n^o i \) : \(X_i = \frac{n_i}{\sum_j n_j} \).
Donc \(P_i = n_i \frac{RT}{V} = \frac{n_i}{n} \frac{RT}{V} = X_i P \)
Fraction massique du gaz n°i : \(Y_i = \frac{m_i}{m} = \frac{n_i M_i}{\sum_j n_j M_j} \).

\[PV = nRT = \frac{m}{M}RT \] où \(M \) est la masse molaire moyenne :

\[M = \frac{m}{n} = \frac{\sum_i n_i M_i}{n} = \frac{\sum_i n_i M_i}{\sum_i n_i} = \sum_i X_i M_i. \]

Densité d’un gaz \(d = \frac{M_{\text{gaz}}}{M_{\text{air}}} \) (\(M_{\text{air}} = 28,96 \text{g.mol}^{-1} \))

II Gaz réels aux hautes pressions

A) Isothermes d’Amagat

Si \(T < T_c \), les isothermes s’interrompent à une certaine valeur de P (changement d’état gaz-liquide)

Si \(T > T_c \), il n’y a pas de discontinuité. Il n’y a donc qu’une seule phase : la phase fluide (pas de distinction entre liquide et gaz)

Si \(T = T_c \), et \(P = P_c \) : tangente verticale. Compressibilité infinie.

\(T_M \) : température de Mariotte, liée à \(\frac{\partial PV}{\partial P} \), pente de l’isotherme d’Amagat en \(P = 0 \).

\[T < T_M \iff \text{pente} < 0 \]

\[T = T_M \iff \text{pente} = 0 \]

\[T > T_M \iff \text{pente} > 0 \]
B) Modèle de Van der Waals

1) Pression interne

Forces attractives de Van der Waals entre les molécules et ses plus proches voisines. Au centre de l’enceinte, \(\sum \vec{F}_{\text{vdw}} = 0 \). Près de la paroi, \(\sum \vec{F}_{\text{vdw}} \neq 0 \) : direction perpendiculaire à la paroi, sens opposé à la paroi.

Lorsqu’une molécule se rapproche de la paroi, la vitesse diminue. La pression au niveau de la paroi est plus faible qu’au centre de l’enceinte.

\[
P_{\text{paroi}} < P_{\text{centre enceinte}}
\]

\[
\downarrow \quad \downarrow \quad \omega : \text{Pression interne due aux interactions de VdW.}
\]

\[
P = P_{\text{cinétique}} - \omega
\]

\[
\omega = a \frac{n^2}{V^2} \quad (a \text{ dépend du gaz considéré}).
\]

2) Covolume

Les molécules ont un volume fini :

Il y a un volume interdit autour de chaque molécule (le centre d’une autre molécule ne peut pas y entrer) : \(v = \frac{4}{3} \pi (2R)^3 \).

Pour \(N \) molécules dans l’enceinte, volume interdit total : (on néglige les intersections de volume interdit) \(N \times V = nN_v \times V = nb \). \(b \) est appelé le covolume.

\[
V - nb = V_{\text{cinétique}}.
\]

3) Equation d’état du gaz de Van der Waals

Equation d’état : \(P_{\text{cinétique}} V_{\text{cinétique}} = nRT_{\text{cinétique}} \iff (P + \frac{n^2a}{V^2})(V - nb) = nRT \)

\[
U_{\text{vdw}}(T,V) = U_{\text{gp}}(T) - \frac{n^2a}{V} \quad \text{(admis)}
\]

4) Calcul de la température de Mariotte d’un gaz de Van der Waals

\[
(P + \frac{an^2}{V^2})(V - nb) = nRT \iff PV - Pnb + \frac{an^2}{V} - \frac{n^3ba}{V^2} = nRT
\]
Ordre 0 :
Si $V \to +\infty$ (à n,T fixés), on a :
$n_v \to 0$, donc $\frac{an^2}{V} - \frac{n^3 b a}{V^2} \to 0$.
Donc $P(V - n b) \sim PV$.
Donc $PV = nRT$. Ainsi, $\lim_{V \to +\infty} G_{\text{vdw}} = G_{\text{GP}}$.

Ordre 1 :
$PV = nRT + Pnb + \frac{P^2 an^3}{V^2} - \frac{Pan^2}{PV} = nRT + Pnb - \frac{an^2 P}{PV} + o(P)
PV \sim nRT$.
Donc $PV = nRT + Pnb - \frac{an^2 P}{nRT + o(P)} + o(P) = nRT + Pn\left(b - \frac{a}{RT}\right) + O(P^2)$

pente $= 0 \iff b - \frac{a}{RT} = 0 \iff T = \frac{a}{Rb} = T_{\text{mariotte}}$

III Coefficients thermoélastiques

A) Définition

$$\alpha = \frac{1}{V} \frac{\partial V}{\partial T} \bigg|_P$$, coefficient de dilatation isobare (paramètre intensif, >0 en général).

Pour une transformation élémentaire à P constante : $dV = \alpha \times V \times dT$. $[\alpha] = \text{K}^{-1}$.

$$\chi_T = -\frac{1}{V} \frac{\partial V}{\partial P} \bigg|_T$$, coefficient de compressibilité isotherme (paramètre intensif, >0 en général). Pour une transformation élémentaire à T constante : $dV = -\chi_T \times V \times dP$.

$[\chi_T] = \text{Pa}^{-1}$.

B) Exemples

1) Gaz parfait

$$PV = nRT \Rightarrow V = \frac{nRT}{P}$$. Donc $\left.\frac{\partial V}{\partial T}\right|_P = \frac{nR}{P}$.

$$\alpha = \frac{1}{V} \frac{\partial V}{\partial T} \bigg|_P = \frac{nR}{V} = \frac{1}{T}, \chi_T = -\frac{1}{V} \frac{\partial V}{\partial P} \bigg|_T = -\frac{1}{V} \frac{-nRT}{P^2} = \frac{nRT}{V^2 P} = \frac{1}{P}$$

2) Gaz réels : Voir exos

3) Utilisation des coefficients thermoélastiques pour obtenir l’équation d’état

On considère un fluide pour lequel $\alpha = \frac{1}{T}, \chi_T = \frac{1}{P}$.

Pour une transformation élémentaire à P constante :

$$\alpha = \frac{1}{V} \frac{dV}{dT} = \frac{1}{T} \iff \frac{dV}{V} = \frac{dT}{T} \Rightarrow \ln(V) = \ln(T) + k(P) \Rightarrow V = e^{k(P)} \times T$$
Pour une transformation élémentaire à T constante :

\[
\chi_T = -\frac{1}{V} \frac{dV}{dP} \Rightarrow \frac{1}{V} = \frac{dP}{dV} \Rightarrow \frac{dP}{dV} = -\ln(V) = \ln(P) + h(T) \Rightarrow \frac{1}{V} = e^{h(T)} \times P
\]

\[
V = K(T) \times T = \frac{1}{H(T) \times P} \Rightarrow T \times H(T) = \frac{1}{P \times K(P)} = cte \quad \text{(Car T peut varier}
\]

sans que P change et vice versa). \Rightarrow K(P) = \frac{1}{P \times cte} \Leftrightarrow PV = cte \times T

PV extensif \Rightarrow PV = n \times cte \times T = nRT \quad \text{(Avogadro–Ampère)}

C) Détermination graphique

IV Phases condensées
A) Equation d’état

Phase condensée : phase solide ou liquide. V dépend de T et P ;

\[
dV = \left| \frac{\partial V}{\partial T} \right|_P \, dT + \left| \frac{\partial V}{\partial P} \right|_T \, dP = \alpha \times V \times dT - \chi_T \times V \times dP.
\]

Dans une phase condensée,

\[
\chi_T \approx 0 \quad \text{(une phase condensée est à peu près incompressible)}
\]

ex : χ_T (eau) $= 4,4 \times 10^{-10} \text{ Pa}^{-1}$. α peut aussi être négligé. Donc $dV \approx 0 \Rightarrow V = cte$

équation d’état de la phase condensée incompressible et indilatable

B) Energie interne

U dépend de V, T.

Pour une transformation élémentaire,

\[
dU = \left| \frac{\partial U}{\partial T} \right|_V \, dT + \left| \frac{\partial U}{\partial V} \right|_T \, dV = C_v \, dT
\]