Brevet Groupement 2 2001

http://melusine.eu.org/syracuse/poulecl

1 Partie numérique

1.1 Exercice 1

- 1. Ecrire sous la forme la plus simple possible $A = \frac{7}{3} \frac{4}{3} \div \frac{2}{5}$.
- 2. Donner l'écriture décimale de

$$B = -4^2 + 10^3 \times 10^{-1} + (-3)^2$$

3. Ecrire sous la forme $a\sqrt{3}$ où a est un nombre entier :

$$C = 2\sqrt{27} - 4\sqrt{3} + \sqrt{12}$$

1.2 Exercice 2

Soit $A = (7x - 3)^2 - 9$.

- 1. Développer et réduire A.
 - 2. Factoriser A.
 - 3. Résoudre l'équation 7x(7x-6) = 0.

1.3 Exercice 3

- 1. Déterminer le pgcd des nombres 108 et 135.
- 2. Marc a 108 billes rouges et 135 billes noires.

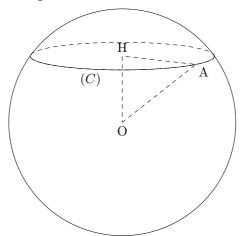
Il veut faire des paquets de sorte que :

- tous les paquets contiennent le même nombre de billes rouges,
- tous les paquets contiennent le même nombre de billes noires,
- toutes les billes rouges et toutes les billes noires soient utilisées.
- (a) Quel nombre maximal de paquets pourra-t-il réaliser?
- (b) Combien y aura-t-il alors de billes rouges et de billes noires dans chaque paquet?

2 Partie géométrique

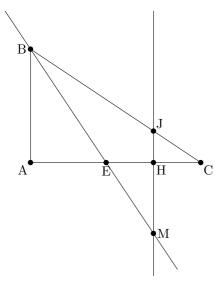
2.1 Exercice 1

Le plan est muni d'un repère orthonormal (O; I; J). L'unité de longueur est le centimètre.


- 1. Placer les points A(2;1), B(5;5) et C(6;2).
- 2. Donner les coordonnées du vecteur \overrightarrow{AB} .
- 3. Calculer la distance AB.
- 4. Placer le point D tel que ABCD soit un parallélogramme.
- 5. Donner sans justifier les coordonnées du point D.
- 6. Calculer les coordonnées du centre de symétrie W du parallélogramme ABCD.

2.2 Exercice 2

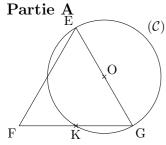
Sur le dessin ci-dessous, la sphère a pour centre O.


Un plan coupe cette sphère selon un cercle (\mathcal{C}) de centre H et de rayon 4, 5 cm (HA=4,5 cm).

- 1. Sachant que $HO = 2, 2 \, cm$, dessiner le triangle OHA en vraie grandeur.
- 2. Calculer la longueur OA à 1 mm près.

Sur ce dessin, les dimensions ne sont pas respectées.

2.3 Exercice 3



On considère un triangle ABC tel que $AB=6\,cm,\,AC=9\,cm$ et $BC=\sqrt{117}\,cm.$

sur ce dessin, les dimensions ne sont pas respectées.

- 1. Quelle est la nature du triangle ABC?
- 2. Le point E est le point du segment [AC] tel que $AE = 4\,cm$. La médiatrice du segment [EC] coupe le segment [EC] en H, le segment [BC] en J et la droite (BE) en M.
 - (a) Prouver que:
 - Les droites (JH) et (AB) sont parallèles;
 - le segment [HC] mesure 2,5 cm.
 - (b) Calculer la valeur exacte de longueur JH.
 - (c) Calculer la longueur HM.

3 Problème

EFG est un triangle isocèle en E tel que $FG=5\,cm$ et $EG=6\,cm$. Le cercle (\mathcal{C}) de centre O et de diamètre [EG] coupe le segment [FG] en K.

La figure ci-dessous n'est pas desinée en vraie grandeur.

- 1. Réaliser la figure en vraie grandeur (utiliser une feuille à part).
- 2. (a) Démontrer que EKG est un triangle rectangle.
 - (b) Démontrer que K est le milieu du segment [FG].
 - (c) Calculer la valeur exacte de EK. Donner une valeur approchée à $1\,mm$ près.
- 3. Soit S l'image du point E par la translation de vecteur \overrightarrow{KG} .
 - (a) Placer le point S sur la figure.
 - (b) Démontrer que ESGK est un rectangle.

Partie B

Compléter la figure en plaçant un point P sur un segment [EG] (ne pas placer P en O). Tracer la parallèle à la droite (FG) passant par P. Elel coupe la droite (EF) en R. On nomme x la longueur du segment [EP] exprimée en cm.

- 1. Préciser sans justifier la nature du triangle EPR.
- 2. Démontrer que $PR = \frac{5}{6}x$.
- 3. Exprimer en fonction de x le périmètre du triangle EPR.

- 4. Démontrer que le périmètre du trapèze RPGF est égal à $\frac{-7x}{6} + 17$.
- 5. Peut-on trouver une position du ponit P sur le segment [EG] pour laquelle le triangle et le trapèze aient le même périmètre? Justifier la réponse.