Modifié le 3 Mai 2009 à 21 h 02.
%@Auteur: François Meria\par
\begin{enumerate}[(a)]
\item
\begin{multicols}{2}
\begin{itemize}
\item [$\circ$] Tracer au centre de la feuille un carré $ABCD$ de
$6$~cm de côté ainsi que ses deux diagonales
d'intersection $O$.
\item [$\circ$] Construire les trois bissectrices du
triangle $ABD$. elles se coupent en $I$.
\item [$\circ$] Tracer le cercle de centre $I$ et de
rayon $IO$. On obtient la figure 1.
\end{itemize}
\begin{center}
\psset{unit=0.6cm}
\pspicture(-0.5,-0.5)(6.5,6.5)
\pstGeonode[PointSymbol=none,PosAngle={225,-45,45,135}](0,0){D}(6,0){C}(6,6){B}(0,6){A}
\pstLineAB{A}{B}
\pstLineAB{C}{B}
\pstLineAB{A}{D}
\pstLineAB{D}{C}
\pstLineAB{A}{C}
\pstLineAB{D}{B}
\pstInterLL[PointSymbol=none,PosAngle=-90]{D}{B}{A}{C}{O}
\pstBissectBAC[PointName=none,PointSymbol=none,linestyle=dotted]{A}{B}{D}{M}
\pstBissectBAC[PointName=none,PointSymbol=none,linestyle=dotted,nodesepB=2.5]{B}{D}{A}{N}
\pstInterLL[PointSymbol=+]{A}{C}{B}{M}{I}
\pstCircleOA{I}{O}
\put(2,-0.7){Figure 1}
\endpspicture
\end{center}
\end{multicols}
\item Compléter cette figure par symétrie par rapport à la
droite $(BD)$, faire de même avec la nouvelle figure par
rapport à la droite $(BC)$ et enfin par rapport à la droite
$(DC)$.
\item Colorier la figure avec deux couleurs différentes que l'on alternera afin d'obtenir la figure 2.
\end{enumerate}
\vskip 1cm
\begin{center}
\psset{unit=1cm}
\pspicture(0,-6)(12,6) %\psgrid
\pstGeonode[PointSymbol=none,PointName=none](0,0){D}(6,0){C}(6,6){B}(0,6){A}
\pstLineAB{A}{B}
\pstLineAB{C}{B}
\pstLineAB{A}{D}
\pstLineAB{D}{C}
\pstLineAB{A}{C}
\pstLineAB{D}{B}
\pstInterLL[PointSymbol=none,PosAngle=-90,PointName=none]{D}{B}{A}{C}{O}
\pstBissectBAC[PointName=none,PointSymbol=none,linestyle=none]{A}{B}{D}{M}
\pstBissectBAC[PointName=none,PointSymbol=none,linestyle=none]{B}{D}{A}{N}
\pstInterLL[PointSymbol=none,PointName=none]{A}{C}{B}{M}{I}
\pstCircleOA{I}{O}
\pstOrtSym[PointSymbol=none,PointName=none]{D}{B}{I}{J}
\pstCircleOA{J}{O}
\pstOrtSym[PointName=none,PointSymbol=none]{B}{C}{D}{E}
\pstOrtSym[PointName=none,PointSymbol=none]{B}{C}{A}{F}
\pstOrtSym[PointName=none,PointSymbol=none]{B}{C}{I}{K}
\pstOrtSym[PointName=none,PointSymbol=none]{B}{C}{J}{L}
\pstOrtSym[PointName=none,PointSymbol=none]{B}{C}{O}{O'}
\pstCircleOA{K}{O'}
\pstCircleOA{L}{O'}
\pstLineAB{B}{E}
\pstLineAB{B}{F}
\pstLineAB{E}{C}
\pstLineAB{E}{F}
\pstLineAB{C}{F}
\pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{A}{Z}
\pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{B}{Y}
\pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{F}{X}
\pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{J}{T}
\pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{I}{Q}
\pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{O}{P}
\pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{O'}{S}
\pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{L}{H}
\pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{K}{H'}
\pstCircleOA{T}{P}
\pstCircleOA{H}{S}
\pstCircleOA{H'}{S}
\pstCircleOA{Q}{P}
\pstLineAB{D}{Z}
\pstLineAB{C}{Y}
\pstLineAB{E}{X}
\pstLineAB{E}{F}
\pstLineAB{C}{F}
\pstLineAB{C}{X}
\pstLineAB{Z}{X}
\pstLineAB{C}{Z}
\pstLineAB{D}{Y}
\pstLineAB{Y}{E}
\put(5.4,-6.7){Figure 2}
\endpspicture
\end{center}