%@Auteur: François Meria\par En utilisant les figures suivantes, compléter le tableau ci-dessous. \vskip 1.5cm \begin{multicols}{3} \begin{tabular}{ll} \pspicture(0,-1)(2.5,1) \put(0,0.5){\begin{tabular}{l}$AB=4$~cm \\ $BC=6$~cm \end{tabular}} \endpspicture & \psset{unit=1cm} \pspicture(0,-1)(2.5,1) \pstGeonode[PointSymbol=none,PosAngle={235,-45}](0,0){A}(2.5,0){B} \pstGeonode[PointSymbol=none,PointName=none](0,0.5){T} \pstRotation[RotAngle=-25,PointName=none,PointSymbol=none]{B}{A}{S} \pstInterLL[PointSymbol=none,PosAngle=90]{A}{T}{B}{S}{C} \pstRightAngle[RightAngleSize=0.2]{B}{A}{C} \pstLineAB{A}{B} \pstLineAB{A}{C} \pstLineAB{B}{C} \pstMarkAngle[MarkAngleRadius=0.8]{C}{B}{A}{} \endpspicture \\ \end{tabular} \begin{tabular}{ll} \pspicture(0,-1)(2.5,1) \put(0,0.5){\begin{tabular}{l}$WN=6$~cm \\ $NA=3$~cm \end{tabular}} \endpspicture & \psset{unit=1cm} \pspicture(0,-1)(2.5,1) \rput{-5}{ \pstGeonode[PointSymbol=none,PosAngle={235,-45}](0,0){A}(2.5,0){W} \pstGeonode[PointSymbol=none,PointName=none](0,0.5){T} \pstRotation[RotAngle=-25,PointName=none,PointSymbol=none]{W}{A}{S} \pstInterLL[PointSymbol=none,PosAngle=90]{A}{T}{W}{S}{N} \pstRightAngle[RightAngleSize=0.2]{W}{A}{N} \pstLineAB{A}{W} \pstLineAB{A}{N} \pstLineAB{W}{N} \pstMarkAngle[MarkAngleRadius=0.5]{A}{N}{W}{} } \endpspicture \\ \end{tabular} \begin{tabular}{ll} \pspicture(0,-1)(2.5,1) \put(0,0.5){\begin{tabular}{l}$FK=3$~cm \\ $FD=4$~cm \end{tabular}} \endpspicture & \psset{unit=1cm} \pspicture(0,-1)(2.5,1) \rput{5}{ \pstGeonode[PointSymbol=none,PosAngle={235,-45}](0,0){F}(2.5,0){D} \pstGeonode[PointSymbol=none,PointName=none](0,0.5){T} \pstRotation[RotAngle=-25,PointName=none,PointSymbol=none]{D}{F}{S} \pstInterLL[PointSymbol=none,PosAngle=90]{F}{T}{D}{S}{K} \pstRightAngle[RightAngleSize=0.2]{D}{F}{K} \pstLineAB{F}{D} \pstLineAB{F}{K} \pstLineAB{D}{K} \pstMarkAngle[MarkAngleRadius=0.8]{K}{D}{F}{} } \endpspicture \\ \end{tabular} \end{multicols} Penser au théorème de Pythagore dans le troisième exemple. \vskip 0.5cm \begin{center} \begin{tabularx}{\textwidth}{|>{\centering}X|>{\centering}X|>{\centering}X|>{\centering}X|} \cline{2-4} \multicolumn{1}{c|}{} & & & \\ \multicolumn{1}{c|}{} & Triangle $ABC$ & Triangle $AWN$& Triangle $FDK$ \tabularnewline \multicolumn{1}{c|}{} & & & \tabularnewline \hline longueur du & & & \tabularnewline côté adjacent de & 4~cm & & \tabularnewline l'angle marqué & & & \tabularnewline \hline longueur de & & & \tabularnewline l'hypoténuse du & 6~cm & & \tabularnewline triangle & & & \tabularnewline \hline & & & \tabularnewline $\dfrac{\textrm{côté adjacent}}{\textrm{hypoténuse}}$ & $\dfrac{4~\textrm{cm}}{6~\textrm{cm}}=\dfrac{2}{3}\approx 0,67$ & & \tabularnewline & & & \tabularnewline \hline cosinus de & & & \tabularnewline l'angle marqué & $0,67$ & & \tabularnewline $\approx$ & & & \tabularnewline \hline valeur (en °) & & & \tabularnewline de l'angle & $48,2$° & & \tabularnewline marqué & & & \tabularnewline \hline \end{tabularx} \end{center}