%@Auteur: d'après APMEP \og Jeux 7 \fg.\par \renewcommand{\arraystretch}{1.5} {\footnotesize \begin{tabularx}{\linewidth}{|l|X|c|c|c|c|c|c|c|c|c|c|c|c|}\SP \LCC% \\ \cline{3-14} \multicolumn{2}{c|}{}&1&2&3&4&5&6&7&8&9&10&11&12\\\RP \hline \ECC \LCC% &&&&&\gray&\gray&\gray&\gray&\gray&\gray&\gray&\gray&\gray\\ A&Les mathématiques en sont un.&J&E&U&&&&&&&&&\\ \hline \ECC \LCC% &&&&&&&&&&\gray&\gray&\gray&\gray\\ B&Le résultat d'une division euclidienne.&&&&&&&&&&&&\\\hline \ECC \LCC% &&&&&&&&\gray&\gray&\gray&\gray&\gray&\gray\\ C&On le trace avec un compas.&&&&&&&&&&&&\\\hline \ECC D&Polygone a quatre côtés.&\phantom{10}&\phantom{10}&\phantom{10}&\phantom{10}&\phantom{10}&\phantom{10}&\phantom{10}&\phantom{10}&\phantom{10}&\phantom{10}&\phantom{10}&\phantom{10}\\\hline \LCC% &&&&&&&&\gray&\gray&\gray&\gray&\gray&\gray\\ E&Point $I$ du segment $[AB]$ tel que $IA=IB$.&&&&&&&&&&&&\\\hline \ECC \LCC% &&&&&&&\gray&\gray&\gray&\gray&\gray&\gray&\gray\\ F&La moitié du diamètre d'un cercle.&&&&&&&&&&&&\\\hline \ECC \LCC% &&&&&&&&&&&&\gray&\gray\\ G&Résultat d'une soustraction.&&&&&&&&&&&&\\\hline \ECC \LCC% &&&&&&&&&&\gray&\gray&\gray&\gray\\ H&Dans $40\div8$; 8 est le \ldots&&&&&&&&&&&&\\\hline \ECC \LCC% &&&&&&&\gray&\gray&\gray&\gray&\gray&\gray&\gray\\ I&Résultat d'une addition.&&&&&&&&&&&&\\\hline \ECC \LCC% &&&&&&&&&&\gray&\gray&\gray&\gray\\ J&Polygone a six côtés.&&&&&&&&&&&&\\\hline \ECC \end{tabularx} } \begin{center} \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}\SP \multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}\\\RP \hline \LCC% &&&&&&\gray&&&&&&\gray\\ C1&J1&D3&B1&A3&D10&&J1&F4&E1&I3&B6&\\\hline \ECC \LCC% &&&&&\gray&&&\gray&&&&\gray\\ G9&D8&C4&J1&C6&&E5&B7&&C5&B2&D6&\\\hline \ECC \LCC% &&\gray&&&&&&&\gray&&&\\ D2&J7&&C2&F5&G3&F2&G8&B4&&D1&H7&B5\\\hline \ECC \LCC% \gray&&&&&\gray&&&&&&&\gray\\ &H3&A2&E6&B8&&A1&B3&H7&D12&C3&.&\\\hline \ECC \end{tabular} \par \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}\SP \multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}&\multicolumn{1}{c}{\phantom{D10}}\\\RP \hline \LCC% &&&&&&\gray&&&&&&\gray\\ &&&&&&&&&&&&\\\hline \ECC \LCC% &&&&&\gray&&&\gray&&&&\gray\\ &&&&&&&&&&&&\\\hline \ECC \LCC% &&\gray&&&&&&&\gray&&&\\ &&&&&&&&&&&&\\\hline \ECC \LCC% \gray&&&&&\gray&&&&&&&\gray\\ &&&&&&&&&&&.&\\\hline \ECC \end{tabular} \end{center} \renewcommand{\arraystretch}{1}