%@Auteur: François Meria\par \begin{multicols}{2} Recopier et calculer les produits suivants comme sur l'exemple. \\ \textit{Exemple} : \columnbreak \begin{align*} 9\times \dfrac{8}{7}&= \dfrac{ 9\times8}{7}\\ &=\dfrac{72}{7}\\ \end{align*} \end{multicols} \begin{multicols}{4} \setlength{\columnseprule}{0.5pt} $9\times \dfrac{10}{6}=$ \dotfill \\ \vskip 0.3cm $9\times \dfrac{3}{9}=$ \dotfill \\ \vskip 0.3cm $5\times \dfrac{7}{7}=$ \dotfill \\ \vskip 0.3cm $4\times \dfrac{4}{2}=$ \dotfill \\ \vskip 0.3cm $5\times \dfrac{2}{3}=$ \dotfill \\ \vskip 0.3cm $10\times \dfrac{5}{6}=$ \dotfill \\ \vskip 0.3cm $9\times \dfrac{9}{4}=$ \dotfill \\ \vskip 0.3cm $9\times \dfrac{6}{4}=$ \dotfill \\ \vskip 0.3cm $5\times \dfrac{8}{1}=$ \dotfill \\ \vskip 0.3cm $7\times \dfrac{9}{3}=$ \dotfill \\ \vskip 0.3cm $12\times \dfrac{7}{19}=$ \dotfill \\ \vskip 0.3cm $8\times \dfrac{17}{14}=$ \dotfill \\ \vskip 0.3cm $12\times \dfrac{7}{14}=$ \dotfill \\ \vskip 0.3cm $12\times \dfrac{5}{19}=$ \dotfill \\ \vskip 0.3cm $16\times \dfrac{20}{15}=$ \dotfill \\ \vskip 0.3cm $6\times \dfrac{20}{10}=$ \dotfill \\ \vskip 0.3cm $10\times \dfrac{19}{4}=$ \dotfill \\ \vskip 0.3cm $14\times \dfrac{1}{19}=$ \dotfill \\ \vskip 0.3cm $13\times \dfrac{3}{16}=$ \dotfill \\ \vskip 0.3cm $12\times \dfrac{7}{11}=$ \dotfill \\ \vskip 0.3cm \end{multicols} \setlength{\columnseprule}{0pt}