%@Auteur: François Meria\par \begin{multicols}{2} En utilisant l'exemple ci-contre, recopier et compléter les égalités de fractions proposées.\\ \textit{Exemple} : \columnbreak \begin{align*} \dfrac{8}{13}&=\dfrac{8\times 2}{26} \\ &=\dfrac{16}{26}\\ \end{align*} \end{multicols} \begin{multicols}{4} $\dfrac{5}{10}=\dfrac{\ldots}{70}=$\dotfill \\ \vskip 0.3cm $\dfrac{20}9=\dfrac{\ldots}{27}=$\dotfill \\ \vskip 0.3cm $\dfrac{13}4=\dfrac{\ldots}{20}=$\dotfill \\ \vskip 0.3cm $\dfrac{20}{14}=\dfrac{\ldots}{98}=$\dotfill \\ \vskip 0.3cm $\dfrac{16}{15}=\dfrac{\ldots}{135}=$\dotfill \\ \vskip 0.3cm $\dfrac{10}4=\dfrac{\ldots}8=$\dotfill \\ \vskip 0.3cm $\dfrac{19}{15}=\dfrac{\ldots}{60}=$\dotfill \\ \vskip 0.3cm $\dfrac16=\dfrac{\ldots}{54}=$\dotfill \\ \vskip 0.3cm $\dfrac{19}{17}=\dfrac{\ldots}{119}=$\dotfill \\ \vskip 0.3cm $\dfrac86=\dfrac{\ldots}{12}=$\dotfill \\ \vskip 0.3cm $\dfrac{14}{15}=\dfrac{\ldots}{75}=$\dotfill \\ \vskip 0.3cm $\dfrac{18}{13}=\dfrac{\ldots}{65}=$\dotfill \\ \vskip 0.3cm $\dfrac3{12}=\dfrac{\ldots}{108}=$\dotfill \\ \vskip 0.3cm $\dfrac{13}{14}=\dfrac{\ldots}{98}=$\dotfill \\ \vskip 0.3cm $\dfrac{10}3=\dfrac{\ldots}{12}=$\dotfill \\ \vskip 0.3cm $\dfrac9{10}=\dfrac{\ldots}{80}=$\dotfill \\ \vskip 0.3cm \end{multicols}