%@Auteur: François Meria\par Il s'agit de construire la figure 2 ci-dessous. La figure 1 représente l'étape intermédiaire pour pouvoir construire la figure 2. \begin{multicols}{2} \begin{center} \psset{unit=0.4cm} \pspicture(-11,-12)(11,11) \pstGeonode[PointSymbol=none,PosAngle={0,90}](0,0){O}(0,10){A} \pstCircleOA[linestyle=dashed]{O}{A} \pstInterCC[PointSymbol=none,PosAngleA=180]{O}{A}{A}{O}{F}{B} \pstInterCC[PointSymbol=none,PointNameB=none,PosAngleA=180]{O}{A}{F}{O}{E}{V} \pstInterCC[PointSymbol=none,PointNameB=none,PosAngleA=-90]{O}{A}{E}{O}{D}{W} \pstInterCC[PointSymbol=none,PointNameB=none]{O}{A}{D}{O}{C}{Z} \psline(A)(D) \psline(B)(E) \psline(C)(F) \pstSegmentMark[SegmentSymbol=pstslash]{A}{F} \pstSegmentMark[SegmentSymbol=pstslash]{A}{F} \pstSegmentMark[SegmentSymbol=pstslash]{E}{F} \pstSegmentMark[SegmentSymbol=pstslash]{B}{C} \pstSegmentMark[SegmentSymbol=pstslash]{D}{E} \pstSegmentMark[SegmentSymbol=pstslash]{D}{C} \pstSegmentMark[SegmentSymbol=pstslash]{O}{F} \pstSegmentMark[SegmentSymbol=pstslash]{O}{E} \pstSegmentMark[SegmentSymbol=pstslash]{O}{D} \pstSegmentMark[SegmentSymbol=pstslash]{O}{C} \pstProjection[CodeFig=true,CodeFigColor=black,PointSymbol=none,PointName=none]{O}{B}{A}[I] \pstProjection[CodeFig=true,CodeFigColor=black,PointSymbol=none,PointName=none]{O}{A}{B}[J] \pstProjection[CodeFig=true,CodeFigColor=black,PointSymbol=none,PointName=none]{A}{B}{O}[K] \pstSegmentMark[SegmentSymbol=pstslashh]{O}{I} \pstSegmentMark[SegmentSymbol=pstslashh]{I}{B} \pstSegmentMark[SegmentSymbol=pstslashh]{B}{K} \pstSegmentMark[SegmentSymbol=pstslashh]{K}{A} \pstSegmentMark[SegmentSymbol=pstslashh]{A}{J} \pstSegmentMark[SegmentSymbol=pstslashh]{J}{O} \pstInterLL[PointName=none,PointSymbol=none]{A}{I}{B}{J}{T1} \pstLineAB{T_1}{A} \pstLineAB{T_1}{B} \pstLineAB{T_1}{O} \put(-1.5,-12){Figure 1.} \endpspicture \end{center} \columnbreak \begin{center} \psset{unit=0.4cm} \pspicture(-11,-12)(11,11) \pstGeonode[PointSymbol=none,PosAngle={0,90},PointName=none](0,0){O}(0,10){A} \pstGeonode[PointSymbol=none,PointName=none](10,0){X} \pstCircleOA[linestyle=dashed]{O}{A} \pstInterCC[PointSymbol=none,PosAngleA=180,PointName=none]{O}{A}{A}{O}{F}{B} \pstInterCC[PointSymbol=none,PointNameB=none,PosAngleA=180,PointName=none]{O}{A}{F}{O}{E}{V} \pstInterCC[PointSymbol=none,PointNameB=none,PosAngleA=-90,PointName=none]{O}{A}{E}{O}{D}{W} \pstInterCC[PointSymbol=none,PointNameB=none,PointName=none]{O}{A}{D}{O}{C}{Z} \psline(A)(D) \psline(B)(E) \psline(C)(F) \pstLineAB{A}{F} \pstLineAB{A}{F} \pstLineAB{E}{F} \pstLineAB{B}{C} \pstLineAB{D}{E} \pstLineAB{D}{C} \pstLineAB{O}{F} \pstLineAB{O}{E} \pstLineAB{O}{D} \pstLineAB{O}{C} \pstProjection[PointSymbol=none,PointName=none]{O}{B}{A}[I] \pstProjection[PointSymbol=none,PointName=none]{O}{A}{B}[J] \pstProjection[PointSymbol=none,PointName=none]{A}{B}{O}[K] \pstLineAB{O}{I} \pstLineAB{I}{B} \pstLineAB{B}{K} \pstLineAB{K}{A} \pstLineAB{A}{J} \pstLineAB{J}{O} \pstInterLL[PointName=none]{A}{I}{B}{J}{T1} \pstOrtSym[PointName=none]{A}{O}{T1}[T2] \pstOrtSym[PointName=none]{O}{X}{T2}[T3] \pstOrtSym[PointName=none]{A}{O}{T3}[T4] \pstOrtSym[PointName=none]{O}{B}{T1}[T5] \pstOrtSym[PointName=none]{O}{F}{T2}[T6] \pspolygon[fillstyle=solid,fillcolor=green](A)(B)(C)(D)(E)(F) \pspolygon[fillstyle=solid,fillcolor=yellow](A)(T2)(F)(T6)(E)(T3)(D)(T4)(C)(T5)(B)(T1) \pspolygon[fillstyle=solid,fillcolor=red](A)(T1)(O) \pspolygon[fillstyle=solid,fillcolor=red](O)(T3)(D) \pspolygon[fillstyle=solid,fillcolor=red](B)(O)(T5) \pspolygon[fillstyle=solid,fillcolor=red](E)(T6)(O) \pspolygon[fillstyle=solid,fillcolor=red](F)(T2)(O) \pspolygon[fillstyle=solid,fillcolor=red](C)(T4)(O) \put(-1.5,-12){Figure 2.} \endpspicture \end{center} \end{multicols} \textbf{Programme de construction }\\ {\texttt{Toutes les constructions doivent se faire au COMPAS et à la règle (sans utiliser les graduations sauf pour le rayon du cercle).}}\\ \shadowbox{ \begin{minipage}[c]{\textwidth} \begin{multicols}{2}\setlength{\columnseprule}{0.5pt} \textbf{\'Etape 1.}\\ Construire un cercle $\mathcal{C}$ de centre $O$ et de rayon 10~cm. Et placer un point $A$ sur le cercle $\cal C$.\\ \textbf{\'Etape 2.}\\ À partir du point $A$, reporter le rayon sur le cercle de manière à construire l'hexagone régulier $ABCDEF$.\\ \textbf{\'Etape 3.}\\ Tracer les segments $[OA]$, $[OB]$, \ldots\\ \textbf{\'Etape 4.}\\ Construire les médiatrices des côtés du triangle $OAB$. Elles se coupent au point $I$.\\ \textbf{\'Etape 5.}\\ Tracer les segments $[IA]$, $[IB]$ et $[IO]$. On obtient la figure 1.\\ \textbf{\'Etape 6.}\\ Recommencer les étapes précédentes dans chacun des autres triangle équilatéraux tracés.\\ \textbf{\'Etape 7.}\\ Colorier de trois couleurs différentes afin d'obtenir la figure 2.\\ \end{multicols} \setlength{\columnseprule}{0pt} \end{minipage} }