%@P:exocorcp %@metapost:602symetrieconstruction.mp %@Dif:2 Pour chacun des cas ci-dessous, construis l'image de la figure $\cal F$ par la symétrie d'axe $(d)$. \begin{center} \includegraphics[scale=0.8]{602symetrieconstruction.1}\kern5mm\includegraphics[scale=0.8]{602symetrieconstruction.2} \\\includegraphics[scale=0.8]{602symetrieconstruction.3}\kern5mm\includegraphics[scale=0.8]{602symetrieconstruction.4} \\\includegraphics[scale=0.8]{602symetrieconstruction.5}\kern5mm\includegraphics[scale=0.8]{602symetrieconstruction.6} \end{center} %@Commentaire: Image mentale de la symétrie axiale. Les constructions permettent de dégager facilement les propriétés de conservation. %@Correction: \includegraphics{602symetrieconstruction.7}\kern5mm\includegraphics{602symetrieconstruction.8} \\\includegraphics{602symetrieconstruction.9}\kern5mm\includegraphics{602symetrieconstruction.10} \\\includegraphics{602symetrieconstruction.11}\kern5mm\includegraphics{602symetrieconstruction.12}