%@P:exocorcp %@metapost:3affineexo44.mp \opcopy{-2.2}{a} \opset{decimalsepsymbol={,}} \begin{center} \psshadowbox{ \begin{minipage}{0.75\linewidth} La représentation graphique d'une fonction $f$ est l'ensemble de tous les points $M$ de coordonnées $(x;f(x))$ obtenus en prenant toutes les valeurs possibles du nombre $x$. \end{minipage} } \end{center} On se propose de représenter graphiquement la fonction $f$ définie par \[x\mapsto x^2-x-1\] \begin{myenumerate} \item Recopie et complète les tableaux suivants : \begin{center} \begin{tabular}{|c|*{9}{m{1cm}|}} \hline $x$&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}\\ \hline $f(x)$&&&&&&&&&\\ \hline \end{tabular} \end{center} \opcopy{-0.3}{a} \begin{center} \begin{tabular}{|c|*{9}{m{1cm}|}} \hline $x$&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}\\ \hline $f(x)$&&&&&&&&&\\ \hline \end{tabular} \end{center} \begin{center} \begin{tabular}{|c|*{9}{m{1cm}|}} \hline $x$&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}\\ \hline $f(x)$&&&&&&&&&\\ \hline \end{tabular} \end{center} \item Place tous ces points dans un repère. \end{myenumerate} %@Correction: \opcopy{-2.2}{a} \opcopy{-2.2}{b} \opset{decimalsepsymbol={,}} \begin{center} \begin{tabular}{|c|*{9}{m{1cm}|}} \hline $x$&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}\\ \hline $f(x)$&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}\\ \hline \multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}\\ \hline \opcopy{-0.3}{a} \opcopy{-0.3}{b} $x$&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,2}{a}$\opprint{a}$}\\ \hline $f(x)$&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,2}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}\\ \hline \multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}&\multicolumn{1}{m{1cm}}{}\\ \hline $x$&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}&\multicolumn{1}{c|}{\opadd*{a}{0,1}{a}$\opprint{a}$}\\ \hline $f(x)$&\multicolumn{1}{c|}{\opadd*{b}{0,1}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,1}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,1}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,1}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,1}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,1}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,1}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,1}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}&\multicolumn{1}{c|}{\opadd*{b}{0,1}{b}\opmul*{b}{b}{c}\opsub*{c}{b}{c}\opsub*{c}1{c}\opprint{c}}\\ \hline \end{tabular} \end{center} \[\includegraphics{3affineexo44.1}\]