%@metapost: 303inequation.mp %@Dif:3 Résous les inéquations suivantes et représente graphiquement les solutions de ces inéquations. \begin{center} \begin{tabular}{c|c} %\hline $2x+7<3x$\kern20mm$(7<x)$&$4x-4\geqslant8$\kern20mm$(x\geqslant3)$\\ \includegraphics[scale=0.75]{303inequation.1}&\includegraphics[scale=0.75]{303inequation.1}\\ &\\ $10x\leqslant8+6x$\kern20mm$(x\leqslant2)$&$-3x>12$\kern20mm$(x<-4)$\\ \includegraphics[scale=0.75]{303inequation.1}&\includegraphics[scale=0.75]{303inequation.1}\\ &\\ $3x-7\leqslant2x+1$\kern20mm$(x\leqslant8)$&$4x-19>x-10$\kern20mm$(x>3)$\\ \includegraphics[scale=0.75]{303inequation.1}&\includegraphics[scale=0.75]{303inequation.1}\\ &\\ $3x-1\geqslant4x+2$\kern20mm$(-3\geqslant x)$&$-2x+5>-2-9x$\kern20mm$(x>-1)$\\ \includegraphics[scale=0.75]{303inequation.1}&\includegraphics[scale=0.75]{303inequation.1}\\ &\\ $4x+15\geqslant-2x+9$\kern20mm$(x\geqslant -1)$&$3x-8<-7x+2$\kern20mm$(x<1)$\\ \includegraphics[scale=0.75]{303inequation.1}&\includegraphics[scale=0.75]{303inequation.1}\\ &\\ $2(x+5)<3(x+2)$\kern20mm$(x>4)$&$3(-x+3)>5(3-x)$\kern20mm$(3<x)$\\ \includegraphics[scale=0.75]{303inequation.1}&\includegraphics[scale=0.75]{303inequation.1}\\ \end{tabular} \end{center} %@Commentaire: On propose un grand nombre d'inéquations. C'est un travail en autonomie.