d'après Gérard Cissa On considère les nombres entiers u et v inférieurs ou égaux à 10 et tels que u > v.

 $u^{2} - v^{2}$

 $u^2 + v^2$

uv

1/ Prouve qu'un triangle dont les côtés mesurent $u^2 + v^2$; $u^2 - v^2$; 2uv est un triangle rectangle.

2/ Trouve tous les triangles rectangles dont les côtés sont des nombres entiers en considérant toutes les valeurs possibles de u et de v. (Il y en a 45)

uv

 $u^{2} + v^{2}$

2uv

												4 .
2	1	2	4	1	5	3	4			_	_	
3	1	3	9	1	10	8	6					
4	1											
5	1											
6	1											
7	1											
8	1											
9	1											
10	1											
3	2											
4	2											
										-		

3/ Colorie dans ce tableau les résultats correspondant à des triangles dits *primitifs*, c'est-à-dire des

triangles dont les côtés ne sont pas proportionnels aux côtés d'un triangle déjà défini.

Exemples: le triangle 3; 4; 5 est un triangle primitif (les cases 5; 3; 4 sont donc à colorier). Le triangle 10; 8; 6 n'est pas un triangle primitif car ses côtés sont respectivement proportionnels aux longueurs 5; 4; 3 (côtés du précédent triangle). En fait, ce triangle a exactement la même forme que le triangle 3; 4; 5; il n'en est qu'un agrandissement (échelle 2).