%@AUTEUR:Guillaume Connan
prologues:=2;
input courbes;
input geo;
color vert_e, turquoise, orange, vert_fonce, rose, vert_mer, bleu_ciel, or, rouge_v,bleu_m,bleu,bleu_f;
vert_e:=(0,0.790002,0.340007);
turquoise:=(0.250999,0.878399,0.815699);
orange:=(0.589999,0.269997,0.080004);
vert_fonce:=(0,1.4*0.392193,0);
rose:=(1.0, 0.752907, 0.796106);
bleu_ciel:=(1.2*0.529405,1.2*0.807794,1);%.2*0.921598);
or:=(1,0.843104,0);
rouge_v:=(0.829997,0.099994,0.119999);
bleu_m:=(0.7*0.529405,0.7*0.807794,0.7);%*0.921598);
bleu_f:=(0.211762,0.3231176,0.3686392);
bleu:=(0.529405,0.807794,1);
%SERIE INTEGRALE
vardef axes =
drawarrow (ux*xmin,0) -- (ux*xmax,0); % axe des x
drawarrow ((0,uy*ymin) -- (0,uy*ymax)) ; % axe des y
label.rt(btex $x$ etex,(xmax*ux,0)); % label de l'axe des x
label.urt(btex $y$ etex,(0,ymax*uy)); % label de l'axe des y
enddef;
beginfig(1);
ux:=0.5cm; uy:=ux;
xmin:=-0.5; xmax:=8;
ymin:=-0.5; ymax:=6;
%Axe
axes;
%Fonction, graphe
vardef f(expr x) =7*((0.8)**x) enddef;
vardef fx(expr x) =x enddef;
vardef trace (suffix g)(expr a,b,inc) =
save i; numeric i;
for i=a step inc until b:
(i*ux,f(i)*uy) ..
endfor (b*ux,f(b)*uy)
enddef;
%Rectangles
% une macro non parfaite pour obtenir le min de f sur un intervalle,
% cela suppose qu'elle soit bien reguliere......
vardef minf(suffix fx,fy)(expr a,b) =
save m,i; numeric m,i;
m:=fy(a);
for i=a step (b-a)/100 until b:
if m>fy(i): m:=fy(i); fi;
endfor;
m
enddef;
%rectangle en dessous de la courbe colorié en bleu, utilise la macro precedente
vardef trace_rectangles_min (suffix fx,fy)(expr a,b,inc) =
save i; numeric i;
for i=a step inc until b-inc:
path p; numeric m;
m:=minf(fx,fy,i,i+inc);
p = (i*ux,0)--((i+inc)*ux,0)--((i+inc)*ux,m*uy)--(i*ux,m*uy)--cycle;
fill p withcolor bleu_ciel;
draw p;
endfor;
enddef;
trace_rectangles_min(fx,f,1,xmax-1,0.75);
draw trace(g,1,7.8,.1);
label.rt(btex $y=f(x)$ etex,((xmax-.2)*ux,(f(xmax-.2))*uy));
endfig;
end