\documentclass{article} \usepackage{pst-solides3d} \begin{document} \pagestyle{empty} \begin{pspicture}(-6,-5)(6,8)% \psframe*[linecolor=blue!50](-6,-5)(6,7) \psset{lightsrc=viewpoint,viewpoint=50 30 15,Decran=60} \psset{solidmemory} \defFunction[algebraic]{F1}(x){3*sin(x)}{}{} %% definition des plans %% exemple 1 \psSolid[object=plan, definition=equation, args={[1 0 0 0] 90}, base=-4.2 4.2 -3.2 3.2, name=monplan, fillcolor=white, linecolor=gray!40, plangrid, planmarks, showBase, ] \psset{plan=monplan} %% construction et nommage d'une droite D %% passant par (0,0) et (2,1) \psProjection[object=droite, args=0 0 2 1, name=D1, linecolor=red, ] %% label de la droite, au point d'abscisse 3 \psProjection[object=point, definition=xdpoint, args=3 D1, text=D, pos=uc, action=none, ] %% definition du point A \psProjection[object=point, args=-3 1, name=A, text=A, pos=uc, ] %% definition du point B \psProjection[object=point, args=-1 -2, name=B, text=B, pos=uc, ] %% droite (AB) = D2 \psProjection[object=droite, args=A B, name=D2, ] %% intersection des droites D1 et D2 \psProjection[object=point, definition=interdroites, args=D1 D2, name=C, text=C, pos=dc, ] %% definition du vecteur U \psProjection[object=vecteur, args=1 2, linecolor=red, name=U, ](C,) %% point F tel que vect(CF) = U \psProjection[object=point, definition=translatepoint, args=C U, text=F, pos=uc, ] \composeSolid \axesIIID(4,4,2)(5,5,6) \end{pspicture} \end{document}