
luameshluamesh
compute and draw meshes with LuaLATEX

𝑃1 𝑃2

𝑃3

𝑃4

𝑃5

𝑃6

𝑃7

𝑃 ∗
1

𝑃 ∗
2 𝑃 ∗

3

𝑃 ∗
4

𝑃
Contributor

Maxime Chupin

Version 0.1, 25 novembre 2016
http://melusine.eu.org/syracuse/G/delaunay/

http://melusine.eu.org/syracuse/G/delaunay/

luamesh: compute and draw meshes with
LuaLATEX

Maxime Chupin <mc@melusine.eu.org>

November 25, 2016

Thepackage luamesh allows to compute and draw 2D triangulation of Delaunay.
The algorithm is written with lua, and depending of the choice of the “engine”, the
draw is done by MetaPost (with luamplib) or by tikz.
The Delaunay triangulation algorithm is the Bowyer and Watson algorithm.

Several macros are provided to draw the global mesh, the set of points, a particular
step of the algorithm.

I would like to thank Jean-Michel Sarlat, who hosts the development with a git project on
the melusine machine:

https://melusine.eu.org/syracuse/G/delaunay/

Then, I would like to thank the first user, an intensive test user, and a very kind English cor-
rector: Nicole Spillane.

1 Installation

Of course, you can just put the two files luamesh.lua and luamesh.sty in the working direc-
tory, but it is not recommended.

1.1 With TEXlive and Linux or Mac OSX

To install luamesh with TEXlive, you have to create the local texmf directory in your home.

user $> mkdir ~/texmf

Then we have to files to place in the correct directories. First, the luamesh.sty file must be
in the directory:

~/texmf/tex/latex/luamesh/

and secondly, the luamesh.lua must be in the directory:

~/texmf/scripts/luamesh/

Once you have done this, luamesh can be included in your document with

2

mailto:mc@melusine.eu.org
https://melusine.eu.org/syracuse/G/delaunay/

\usepackage{luamesh}

1.2 With MikTEX and Windows

We do not know these two systems, so we refer to the documentation for integrating local
additions to MikTEX:

http://docs.miktex.org/manual/localadditions.html

1.3 A LuaLATEX package

If you want to use this package, you must compile your document with lualatex:

user $> lualatex mylatexfile.tex

1.4 Dependencies

This package is built upon two main packages to draw the triangulations :

1. luamplib to use MetaPost via the LuaTEX library mplib;

2. and tikz.

We will see how to choose between these two drawing engines.
Moreover, the following packages are necessary:

1. xkeyval to manage the optional arguments;

2. xcolor to use colors (needed by luamplib);

3. ifthen to help the programming with TEX.

2 The Basic Macros

Let us recall that this package provides macros to draw two dimensional triangulations (or
meshes).

2.1 Draw a Complete Mesh

\buildMeshBW[⟨options⟩]{⟨list of points⟩ or ⟨file name⟩}

This macro produce the Delaunay triangulation (using the Bowyer and Watson algorithm)
of the given ⟨list of points⟩. The list of points must be given in the following way :

(x1,y1);(x2,y2);(x3,y3);...;(xn,yn)

3

http://docs.miktex.org/manual/localadditions.html

\buildMeshBW{(0.3,0.3);(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)}

2.1.1 The Options

There are several options to customize the drawing.

mode = int (default) or ext: this option allows to use either the previously described set
of point in the argument, or a file, containing, line by line (2 columns), the points. Such
a file looks like :

x1 y1

x2 y2

x3 y3

...

xn yn

bbox = none (default) or show: this option allows to draw the added points to form a bound-
ing box1 and the corresponding triangulation. By default, these triangles are removed
at the end of the algorithm.

color = ⟨value⟩ (default: black): The color of the drawing.

colorBbox = ⟨value⟩ (default: black): The color of the drawing for the elements (points
and triangles) belonging to the bounding box.

print = none (default) or points: To label the vertices of the triangulationswith an adding
dot.

meshpoint = ⟨value⟩ (default: P): The letter(s) used to label the vertices of the triangu-
lation. It is include in the math mode delimiters $...$. The bounding box points are
labeled with a star exponent, and numbered from 1 to 4.

tikz (boolean, default:false): By default, this boolean is set to false, andMetaPost (with
luamplib) is used to draw the picture. With this option, it is tikz the drawing engine.

scale = ⟨value⟩ (default: 1cm): The scale option defines the scale at which the picture is
draw (the same for the two axis). It must contain the unit of length (cm, pt, etc.).

1The bounding box is defined by four points place at 15% around the box defined by (𝑥min, 𝑦min), (𝑥min, 𝑦max),
(𝑥max, 𝑦max), and (𝑥min, 𝑦max).

4

To illustrate the options, let us show you an example. We consider a file mesh.txt:

0.3 0.3

1.5 1

4 0

4.5 2.5

1.81 2.14

2.5 0.5

2.8 1.5

\buildMeshBW[%

tikz,

mode = ext,

bbox = show,

color = red,

colorBbox = blue!30,

print = points,

meshpoint = x,

scale = 1.3cm,

]{mesh.txt}

•𝑥1

•𝑥2

•𝑥3

•𝑥4•𝑥5

•𝑥6

•𝑥7

•
𝑥 ∗1

•
𝑥 ∗2

•
𝑥 ∗3

•
𝑥 ∗4

The drawing engine is not here very relevant. But it is useful to understand how the
drawing is made. However, the engine will make sens for the so called inc macros

(section 3), where we will be allowed to add code before and after the generated one by
luamesh.

2.2 Draw the Set of Points

\drawPointsMesh[⟨options⟩]{⟨list of points⟩ or ⟨file name⟩}

With the \drawPointsMesh, we plot the set of the points from which the Browyer and Wat-
son algorithm compute the triangulation.

5

The use of this macro is quite similar to the \buildMeshBW. Here is an example of the basic
uses.

\drawPointsMesh{(0.3,0.3);(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)}

2.2.1 The Options

There are several options (exactly the same that for the \buildMeshBW)to customize the draw-
ing.

mode = int (default) or ext: this option allows to use either the previously described set
of point in the argument, or a file, containing, line by line (2 columns), the points. Such
a file looks like :

x1 y1

x2 y2

x3 y3

...

xn yn

bbox = none (default) or show: this option allows to draw the added points to form a bound-
ing box and the corresponding triangulation. By default, these triangles are removed at
the end of the algorithm. Here, because we plot only the vertices of the mesh, there is no
triangles, but only dots.

color = ⟨value⟩ (default: black): The color of the drawing.

colorBbox = ⟨value⟩ (default: black): The color of the drawing for the elements (points
and triangles) belonging to the bounding box.

print = none (default) or points: To label the vertices of the triangulationswith an adding
dot. Without label, there is a dot.

meshpoint = ⟨value⟩ (default: P): The letter(s) used to label the vertices of the triangu-
lation. It is include in the math mode delimiters $...$. The bounding box points are
labeled with a star exponent, and numbered from 1 to 4.

tikz (boolean, default:false): By default, this boolean is set to false, andMetaPost (with
luamplib) is used to draw the picture. With this option, it is tikz the drawing engine.

6

scale = ⟨value⟩ (default: 1cm): The scale option defines the scale at which the picture is
draw (the same for the two axis). It must contain the unit of length (cm, pt, etc.).

With the same external mesh point file presented in section 2.1, we illustrate the different
options.

\drawPointsMesh[%

tikz,

mode = ext,

bbox = show,

color = blue,

colorBbox = red,

print = points,

meshpoint = y,

scale = 1.3cm,

]{mesh.txt}

•𝑦1

•𝑦2

•𝑦3

•𝑦4•𝑦5

•𝑦6

•𝑦7

•
𝑦∗1

•
𝑦∗2

•
𝑦∗3

•
𝑦∗4

2.3 Draw a Step of the Bowyer and Watson Algorithm

\meshAddPointBW[⟨options⟩]{⟨list of points⟩ or ⟨file name⟩}{⟨point⟩ or ⟨number of line⟩}

This command allows to plot the different step of the addition of a point in a Delaunay
triangulation, using the Bowyer and Watson algorithm.
This macro produce the Delaunay triangulation (using the Bowyer and Watson algorithm)

of the given ⟨list of points⟩ and shows a step of the algorithm when the ⟨point⟩ is added. The
list of points must be given in the following way:

(x1,y1);(x2,y2);(x3,y3);...;(xn,yn)

and the point is of the form (x,y). The ⟨file name⟩ and ⟨number of line⟩ will be explained in
the option description.
One can use the macro as fallow:

7

\meshAddPointBW[step=badtriangles]{(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)

}{(2.2,1.8)}

\meshAddPointBW[step=cavity]{(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)

}{(2.2,1.8)}

\meshAddPointBW[step=newtriangles]{(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)

}{(2.2,1.8)}

𝑃1

𝑃2

𝑃3
𝑃4

𝑃5

𝑃6
𝑃

𝑃1

𝑃2

𝑃3
𝑃4

𝑃5

𝑃6
𝑃

𝑃1

𝑃2

𝑃3
𝑃4

𝑃5

𝑃6
𝑃

The default value for step is badtriangles. The first line is then equivalent to

\meshAddPointBW{(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)}{(2.2,1.8)}

2.3.1 The Options

There are several options (some of them are the same as for \buildMeshBW) to customize the
drawing.

mode = int (default) or ext: this option allows to use either the previously described set
of point in the argument number one, or a file, containing, line by line (2 columns), the
points. Such a file looks like :

x1 y1

x2 y2

x3 y3

...

xn yn

For the second argument of the macro, if we are in the mode = ext, the argument must
be the line number of the file corresponding to the point we want to add. The algorithm
will stop the line before to build the initial triangulation for which it will add the point
corresponding to the line. The other lines of the file are ignored.

bbox = none (default) or show: this option allows to draw the added points to form a bound-
ing box and the corresponding triangulation. By default, these triangles are removed at
the end of the algorithm.

8

color = ⟨value⟩ (default: black): The color of the drawing.

colorBbox = ⟨value⟩ (default: black): The color of the drawing for the elements (points
and triangles) belonging to the bounding box.

colorNew = ⟨value⟩ (default: red): The color of the drawing of the “new” elements which
are the point to add, the polygon of the cavity, and the new triangles.

colorBack = ⟨value⟩ (default: black!20): Thecolor for the filling of the region concerned
by the addition of the new point.

colorCircle = ⟨value⟩ (default: green): The color for circoncircle of the triangles con-
taining the point to add.

meshpoint = ⟨value⟩ (default: P): The letter(s) used to label the vertices of the triangu-
lation. It is include in the math mode delimiters $...$. The bounding box points are
labeled with a star exponent, and numbered from 1 to 4.

step = badtriangles (default) or cavity or newtriangles: To choose the step wewant
to draw, corresponding to the steps of the Bowyer and Watson algorithm.

newpoint = ⟨value⟩ (default: P): The letter(s) used to label the new point of the triangu-
lation. It is include in the math mode delimiters $...$.

tikz (boolean, default:false): By default, this boolean is set to false, andMetaPost (with
luamplib) is used to draw the picture. With this option, it is tikz the drawing engine.

scale = ⟨value⟩ (default: 1cm): The scale option defines the scale at which the picture is
draw (the same for the two axis). It must contain the unit of length (cm, pt, etc.).

Here is an example of customization of the drawing. First, recall that the external file
mesh.txt is:

0.3 0.3

1.5 1

4 0

4.5 2.5

1.81 2.14

2.5 0.5

2.8 1.5

We draw the addition of the 6th point. The 7th line will be ignored.

\meshAddPointBW[

tikz,

mode = ext,

color = blue!70,

meshpoint = \alpha,

newpoint = y,

9

colorBack=red!10,

colorNew = green!50!red,

colorCircle = blue,

colorBbox = black!20,

bbox = show,

scale=1.4cm,

step=badtriangles]

{mesh.txt}{6}

•𝛼1

•𝛼2

•𝛼3

•𝛼4•𝛼5

•𝛼6

•
𝛼 ∗
1

•
𝛼 ∗
2

•
𝛼 ∗
3

•
𝛼 ∗
4

•𝑦

3 The inc Macros

The three macros presented in the above sections have complementary macros, with the suf-
fix inc that allow the user to add code (MetaPost or tikz, depending of the drawing engine)
before and after the code generated by luamesh.
The three macros are:

\buildMeshBWinc[⟨options⟩]{⟨list of points⟩ or ⟨file name⟩}{⟨code before⟩}{⟨code after⟩}

\drawPointsMeshinc[⟨options⟩]{⟨list of points⟩ or ⟨file name⟩}{⟨code before⟩}{⟨code after⟩}

\meshAddPointBWinc[⟨options⟩]{⟨list of points⟩ or ⟨file name⟩}%
{⟨point⟩ or ⟨number of line⟩}{⟨code before⟩}{⟨code after⟩}

3.1 With MetaPost

We consider the case where the drawing engine is MetaPost (through the luamplib package).

3.2 With TikZ

4 Gallery of Examples

10

	Installation
	With TeXlive and Linux or Mac OSX
	With MikTeX and Windows
	A LuaLaTeX package
	Dependencies

	The Basic Macros
	Draw a Complete Mesh
	The Options

	Draw the Set of Points
	The Options

	Draw a Step of the Bowyer and Watson Algorithm
	The Options

	The inc Macros
	With MetaPost
	With TikZ

	Gallery of Examples

