
luameshluamesh
compute and draw meshes with LuaLATEX

𝑃1 𝑃2

𝑃3

𝑃4

𝑃5

𝑃6

𝑃7

𝑃 ∗
1

𝑃 ∗
2 𝑃 ∗

3

𝑃 ∗
4

𝑃
Contributor

Maxime Chupin

Version 0.2, 29 novembre 2016
http://melusine.eu.org/syracuse/G/delaunay/

http://melusine.eu.org/syracuse/G/delaunay/

luamesh: compute and draw meshes with
LuaLATEX

Maxime Chupin <mc@melusine.eu.org>

November 29, 2016

The package luamesh allows to compute and draw 2D Delaunay triangulation.
The algorithm is written with lua, and depending on the choice of the “engine”,
the drawing is done by MetaPost (with luamplib) or by tikz.
The Delaunay triangulation algorithm is the Bowyer and Watson algorithm.

Several macros are provided to draw the global mesh, the set of points, or a par-
ticular step of the algorithm.

I would like to thank Jean-Michel Sarlat, who hosts the development with a git project on
the melusine machine:

https://melusine.eu.org/syracuse/G/delaunay/

I would also like to thank the first user, an intensive test user, and a very kind English corrector:
Nicole Spillane.

Contents

1 Installation 3
1.1 With TEXlive and Linux or Mac OSX . 3
1.2 With MikTEX and Windows . 4
1.3 A LuaLATEX package . 4
1.4 Dependencies . 4

2 The Basic Macros 4
2.1 Draw a Complete Mesh . 4

2.1.1 The Options . 5
2.2 Draw the Set of Points . 6

2.2.1 The Options . 7
2.3 Draw a Step of the Bowyer and Watson Algorithm 8

2.3.1 The Options . 9

2

mailto:mc@melusine.eu.org
https://melusine.eu.org/syracuse/G/delaunay/

3 The inc Macros 11
3.1 With MetaPost . 11

3.1.1 The LATEX Colors Inside the MetaPost Code 12
3.1.2 The Mesh Points . 12
3.1.3 Examples . 12

3.2 With TikZ . 14
3.2.1 The Mesh Points . 14
3.2.2 Examples . 14

4 Voronio Diagrams 15
4.1 The Options . 16
4.2 The inc variant . 17

5 With Gmsh 17
5.1 Gmsh and Voronoi Diagrams . 18
5.2 The inc variants . 19

6 Gallery 19
6.1 With Animate . 19

1 Installation

Of course, you can just put the two files luamesh.lua and luamesh.sty in the working direc-
tory, but this is not recommended.

1.1 With TEXlive and Linux or Mac OSX

To install luamesh with TEXlive, you have to create the local texmf directory in your home.

user $> mkdir ~/texmf

Then place the files in the correct directories. First, the luamesh.sty file must be in the
directory:

~/texmf/tex/latex/luamesh/

and secondly, the luamesh.lua must be in the directory:

~/texmf/scripts/luamesh/

Once you have done this, luamesh can be included in your document with

\usepackage{luamesh}

3

1.2 With MikTEX and Windows

We do not know these two systems, so we refer to the documentation for integrating local
additions to MikTEX:

http://docs.miktex.org/manual/localadditions.html

1.3 A LuaLATEX package

If you want to use this package, you must compile your document with lualatex:

user $> lualatex mylatexfile.tex

1.4 Dependencies

This package is built upon two main existing packages to draw the triangulations :

1. luamplib to use MetaPost via the LuaTEX library mplib;

2. and tikz.

We will see how to choose between these two drawing engines.
Moreover, the following packages are necessary:

1. xkeyval to manage the optional arguments;

2. xcolor to use colors (needed by luamplib);

3. ifthen to help the programming with TEX.

2 The Basic Macros

Let us recall that this package provides macros to draw two dimensional triangulations (or
meshes).

2.1 Draw a Complete Mesh

\buildMeshBW[⟨options⟩]{⟨list of points⟩ or ⟨file name⟩}

This macro produces the Delaunay triangulation (using the Bowyer and Watson algorithm)
of the given ⟨list of points⟩. The list of points must be given in the following way :

(x1,y1);(x2,y2);(x3,y3);...;(xn,yn)

\buildMeshBW{(0.3,0.3);(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)}

4

http://docs.miktex.org/manual/localadditions.html

2.1.1 The Options

There are several options to customize the drawing.

mode = int (default) or ext: this option allows to use either the previously described set
of points in the argument, or a file, containing, line by line (2 columns), the points. Such
a file looks like :

x1 y1

x2 y2

x3 y3

...

xn yn

bbox = none (default) or show: this option allows to draw the added points to form a bound-
ing box1 and the corresponding triangulation. By default, these triangles are removed
at the end of the algorithm.

color = ⟨value⟩ (default: black): The color of the drawing.

colorBbox = ⟨value⟩ (default: black): The color of the drawing for the elements (points
and triangles) belonging to the bounding box.

print = none (default) or points: To label the vertices of the triangulation. This also
adds a dot at each vertex.

meshpoint = ⟨value⟩ (default: P): The letter(s) used to label the vertices of the triangu-
lation. It is included in the math mode delimiters $...$. The bounding box points are
labeled with numbers 1 to 4 and with a star exponent.

tikz (boolean, default:false): By default, this boolean is set to false, andMetaPost (with
luamplib) is used to draw the picture. With this option, tikz becomes the drawing
engine.

scale = ⟨value⟩ (default: 1cm): The scale option defines the scale at which the picture is
drawn (the same for both axes). It must contain the unit of length (cm, pt, etc.).

To illustrate the options, let us show you an example. We consider a file mesh.txt:
1The bounding box is defined by four points place at 15% around the box defined by (𝑥min, 𝑦min), (𝑥min, 𝑦max),
(𝑥max, 𝑦max), and (𝑥min, 𝑦max). It is used by the algorithm and will be computed in any case.

5

0.3 0.3

1.5 1

4 0

4.5 2.5

1.81 2.14

2.5 0.5

2.8 1.5

\buildMeshBW[%

tikz,

mode = ext,

bbox = show,

color = red,

colorBbox = blue!30,

print = points,

meshpoint = x,

scale = 1.3cm,

]{mesh.txt}

•𝑥1

•𝑥2

•𝑥3

•𝑥4•𝑥5

•𝑥6

•𝑥7

•
𝑥 ∗1

•
𝑥 ∗2

•
𝑥 ∗3

•
𝑥 ∗4

The drawing engine is not very relevant here, but it is useful to understand how the
drawing is made. However, the engine will be relevant to the so called inc macros

(section 3), for adding code before and after the one generated by luamesh.

2.2 Draw the Set of Points

\drawPointsMesh[⟨options⟩]{⟨list of points⟩ or ⟨file name⟩}

With the \drawPointsMesh, we plot the set of (user chosen) points from which the Bowyer
and Watson algorithm computes the triangulation.
The use of this macro is quite similar to \buildMeshBW. Here is an example of the basic uses.

6

\drawPointsMesh{(0.3,0.3);(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)}

2.2.1 The Options

There are several options (exactly the same as for the \buildMeshBW) to customize the drawing.

mode = int (default) or ext: this option allows to use either the previously described set
of points as the argument, or a file, containing, line by line (2 columns), the points. Such
a file looks like :

x1 y1

x2 y2

x3 y3

...

xn yn

bbox = none (default) or show: this option allows to draw the added points to form a bound-
ing box and the corresponding triangulation. By default, these triangles are removed at
the end of the algorithm. Here, because we plot only the vertices of the mesh, there are no
triangles, only dots.

color = ⟨value⟩ (default: black): The color of the drawing.

colorBbox = ⟨value⟩ (default: black): The color of the drawing for the elements (points
and triangles) belonging to the bounding box.

print = none (default) or points: To label the vertices of the triangulation. This also
adds a dot at each vertex. Without label, there is still the dot.

meshpoint = ⟨value⟩ (default: P): The letter(s) used to label the vertices of the triangu-
lation. It is included in the math mode delimiters $...$. The bounding box points are
labeled with numbers 1 to 4 and with a star exponent.

tikz (boolean, default:false): By default, this boolean is set to false, andMetaPost (with
luamplib) is used to draw the picture. With this option, tikz becomes the drawing
engine.

scale = ⟨value⟩ (default: 1cm): The scale option defines the scale at which the picture is
drawn (the same for both axes). It must contain the unit of length (cm, pt, etc.).

7

With the same external mesh point file presented in section 2.1, we illustrate the different
options.

\drawPointsMesh[%

tikz,

mode = ext,

bbox = show,

color = blue,

colorBbox = red,

print = points,

meshpoint = y,

scale = 1.3cm,

]{mesh.txt}

•𝑦1

•𝑦2

•𝑦3

•𝑦4•𝑦5

•𝑦6

•𝑦7

•
𝑦∗1

•
𝑦∗2

•
𝑦∗3

•
𝑦∗4

2.3 Draw a Step of the Bowyer and Watson Algorithm

\meshAddPointBW[⟨options⟩]{⟨list of points⟩ or ⟨file name⟩}{⟨point⟩ or ⟨number of line⟩}

This command allows to plot the steps within the addition of a point in a Delaunay triangu-
lation, by the Bowyer and Watson algorithm.
This macro produces the Delaunay triangulation (using the Bowyer and Watson algorithm)

of the given ⟨list of points⟩ and shows a step of the algorithm when the ⟨point⟩ is added. The
list of points must be given in the following way:

(x1,y1);(x2,y2);(x3,y3);...;(xn,yn)

and the point is of the form (x,y). The ⟨file name⟩ and ⟨number of line⟩ will be explained in
the option description.
One can use the macro as fallows:

\meshAddPointBW[step=badtriangles]{(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)

}{(2.2,1.8)}

\meshAddPointBW[step=cavity]{(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)

}{(2.2,1.8)}

8

\meshAddPointBW[step=newtriangles]{(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)

}{(2.2,1.8)}

𝑃1

𝑃2

𝑃3
𝑃4

𝑃5

𝑃6
𝑃

𝑃1

𝑃2

𝑃3
𝑃4

𝑃5

𝑃6
𝑃

𝑃1

𝑃2

𝑃3
𝑃4

𝑃5

𝑃6
𝑃

The default value for step is badtriangles. Consequently, the first line is equivalent to

\meshAddPointBW{(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)}{(2.2,1.8)}

2.3.1 The Options

There are several options (some of them are the same as for \buildMeshBW) to customize the
drawing.

mode = int (default) or ext: this option allows to use either the previously described set
of point in the first argument, or a file containing, line by line (2 columns), the points.
Such a file looks like :
x1 y1

x2 y2

x3 y3

...

xn yn

For the second argument of the macro, if we are in the mode = ext, the argument must
be the line number of the file corresponding to the point we want to add. The algorithm
will stop the line before to build the initial triangulation for which it will add the point
corresponding to the line. The subsequent lines in the file are ignored.

bbox = none (default) or show: this option allows to draw the added points to form a bound-
ing box and the corresponding triangulation. By default, these triangles are removed at
the end of the algorithm.

color = ⟨value⟩ (default: black): The color of the drawing.

colorBbox = ⟨value⟩ (default: black): The color of the drawing for the elements (points
and triangles) belonging to the bounding box.

9

colorNew = ⟨value⟩ (default: red): The color of the drawing of the “new” elements which
are the point to add, the polygon of the cavity, and the new triangles.

colorBack = ⟨value⟩ (default: black!20): Thecolor for the filling of the region concerned
by the addition of the new point.

colorCircle = ⟨value⟩ (default: green): The color for the circumcircle of the triangles
containing the point to add.

meshpoint = ⟨value⟩ (default: P): The letter(s) used to label the vertices of the triangu-
lation. It is included in the math mode delimiters $...$. The bounding box points are
labeled with numbers 1 to 4 and with a star exponent.

step = badtriangles (default) or cavity or newtriangles: To choose the step wewant
to draw, corresponding to the steps of the Bowyer and Watson algorithm.

newpoint = ⟨value⟩ (default: P): The letter(s) used to label the new point of the triangu-
lation. It is include in the math mode delimiters $...$.

tikz (boolean, default:false): By default, this boolean is set to false, andMetaPost (with
luamplib) is used to draw the picture. With this option, tikz is the drawing engine.

scale = ⟨value⟩ (default: 1cm): The scale option defines the scale at which the picture is
draw (the same for the two axis). It must contain the unit of length (cm, pt, etc.).

Here is an example of customizing the drawing. First, recall that the external file mesh.txt
is:

0.3 0.3

1.5 1

4 0

4.5 2.5

1.81 2.14

2.5 0.5

2.8 1.5

We draw the addition of the 6th point. The 7th line will be ignored.

\meshAddPointBW[

tikz,

mode = ext,

color = blue!70,

meshpoint = \alpha,

newpoint = y,

colorBack=red!10,

colorNew = green!50!red,

colorCircle = blue,

colorBbox = black!20,

bbox = show,

scale=1.4cm,

10

step=badtriangles]

{mesh.txt}{6}

•𝛼1

•𝛼2

•𝛼3

•𝛼4•𝛼5

•𝛼6

•
𝛼 ∗
1

•
𝛼 ∗
2

•
𝛼 ∗
3

•
𝛼 ∗
4

•𝑦

3 The inc Macros

The three macros presented in the above sections have complementary macros, with the suf-
fix inc that allow the user to add code (MetaPost or tikz, depending of the drawing engine)
before and after the code generated by luamesh.
The three macros are:

\buildMeshBWinc[⟨options⟩]{⟨list of points⟩ or ⟨file name⟩}{⟨code before⟩}{⟨code after⟩}

\drawPointsMeshinc[⟨options⟩]{⟨list of points⟩ or ⟨file name⟩}{⟨code before⟩}{⟨code after⟩}

\meshAddPointBWinc[⟨options⟩]{⟨list of points⟩ or ⟨file name⟩}%
{⟨point⟩ or ⟨number of line⟩}{⟨code before⟩}{⟨code after⟩}

3.1 With MetaPost

We consider the case where the drawing engine is MetaPost (through the luamplib package).
We describe the feature taking onemacro in example but themechanism and the possibilities

are exactly the same for all the macros.
When we use the MetaPost drawing engine, the macros previously described produced a

code of the form

\begin{luamplib}

u:=<scale>;
beginfig(0);

<code for the drawing>
endfig;

\end{luamplib}

11

Then, the arguments ⟨code before⟩ and ⟨code after⟩ are inserted as follows:

\begin{luamplib}

u:=<scale>;
<<code before>>
<code for the drawing>
<<code after>>

\end{luamplib}

With the inc macros, the user has to add the beginfig(); and endfig; commands
to produce a picture. Indeed, this allows to use the \everymplib command from the

\luamplib package.

3.1.1 The LATEX Colors Inside the MetaPost Code

Theconfigurable colors of the LATEXmacro are accessible inside theMetaPost code. For \buildMeshBWinc
and \drawPointsMeshinc, we have \luameshmpcolor, and \luameshmpcolorBbox. For themacro
\meshAddPointBWincwehave three additional colors : \luameshmpcolorBack, \luameshmpcolorNew,
and \luameshmpcolorCircle. Of course, we can define MetoPost colors as well. Finally, the
luamplib mechanism of \mpcolor is also available.

3.1.2 The Mesh Points

At the beginning of the automatically generated code, a list of MetaPost pairs are defined
corresponding to all the vertices of the mesh (when the option bbox=show, the last 4 points are
the bounding box points). The points are available with the MeshPoints[] table of variables.
The MeshPoints[i] are defined using the unit length u.

3.1.3 Examples

Here is three examples for the different macros.

\drawPointsMeshinc[

color = blue!50,

print = points,

meshpoint = x,

scale=0.8cm,

]{(0.3,0.3);(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)}%

{% code before

beginfig(0);

}%

{% code after

label(btex Mesh \mathbb{T} etex, (0,2u)) withcolor \luameshmpcolor;

endfig;

}

\buildMeshBWinc[%

bbox = show,

12

color = red,

colorBbox = blue!30,

print = points,

meshpoint = x,

scale=0.8cm

]{(0.3,0.3);(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)}%

{% code before

beginfig(0);

}

{% code after

drawdblarrow MeshPoints[3] -- MeshPoints[9] withpen pencircle scaled 1pt

withcolor (0.3,0.7,0.2);

endfig;

}

\meshAddPointBWinc[

meshpoint = \alpha,

newpoint = y,

colorBack=red!10,

colorNew = green!50!red,

colorCircle = blue,

colorBbox = black!20,

bbox = show,

scale=0.8cm,

step=badtriangles]

{(0.3,0.3);(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5)}{(2.8,1.5)}%

{%code before

picture drawing;

drawing := image(

}{%code after

);

beginfig(0);

fill MeshPoints[7]--MeshPoints[8]--MeshPoints[9]--MeshPoints[10]--cycle

withcolor \mpcolor{blue!10};

draw drawing;

endfig;

}

𝑥1

𝑥2

𝑥3

𝑥4𝑥5

𝑥6

𝑥7
Mesh 𝕋

𝑥1

𝑥2

𝑥3

𝑥4𝑥5

𝑥6

𝑥7

𝑥 ∗1

𝑥 ∗2 𝑥 ∗3

𝑥 ∗4

𝛼1

𝛼2

𝛼3

𝛼4𝛼5

𝛼6

𝛼 ∗
1

𝛼 ∗
2 𝛼 ∗

3

𝛼 ∗
4

𝑦

The variables MeshPoints[] are not defined for the argument corresponding to the
code to place before the code generated by luamesh. Hence, to use such variables, we

have to define a picture as shown in the third example above.

13

3.2 With TikZ

If we have chosen tikz as the engine drawing, the added code will be written in tikz. In that
case, the two arguments ⟨code before⟩ and ⟨code after⟩ will be inserted as follows:

\noindent

\begin{tikzpicture}[x=<scale>,y=<scale>]
<<code before>>
<generated code>
<<code after>>

\end{tikzpicture}

Because the engine is tikz their is no issue with colors, the LATEX colors (e.g.: xcolor) can
be directly used.

3.2.1 The Mesh Points

The points of the mesh are defined here as tikz \coordinate named as follows

\coordinate (MeshPoints1) at (...,...);

\coordinate (MeshPoints2) at (...,...);

\coordinate (MeshPoints3) at (...,...);

%etc.

Once again these coordinates are not yet defined for the ⟨code before⟩ argument.

3.2.2 Examples

\drawPointsMeshinc[

tikz,

color = blue!50,

print = points,

meshpoint = x,

scale=0.8cm,

]{(0.3,0.3);(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)}%

{% code before

}%

{% code after

\node[color = blue!50] at (0,2) {Mesh \mathbb{T}} ;

}

\buildMeshBWinc[%

tikz,

bbox = show,

color = red,

colorBbox = blue!30,

print = points,

meshpoint = x,

scale=0.8cm

]{(0.3,0.3);(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5)}%

14

{% code before

}

{% code after

\draw[<−>,thick, color=green] (MeshPoints3) -- (MeshPoints9);

}

•𝑥1

•𝑥2
•𝑥3

•𝑥4•𝑥5

•𝑥6

•𝑥7

Mesh 𝕋

•𝑥1

•𝑥2
•𝑥3

•𝑥4•𝑥5

•𝑥6

•𝑥7

•
𝑥 ∗1

•
𝑥 ∗2

•
𝑥 ∗3

•
𝑥 ∗4

4 Voronio Diagrams

Another interesting concept of Delaunay triangulation is that it is dual to it so-called Voronio
diagram. For a finite set of points {𝑝1, … , 𝑝𝑛} in the Euclidean plane, for all 𝑝𝑘, it corresponds
a Voronoi cell 𝑅𝑘 consisting of every point in the Euclidean plane whose distance to 𝑝𝑘 is less
than or equal to its distance to any other 𝑝𝑘′ .

\buildVoronoiBW[⟨options⟩]{⟨list of points⟩ or ⟨file name⟩}

This macro produce the Voronio diagram dual to the Delaunay triangulation (computed by
the Bowyer and Watson algorithm) of the given ⟨list of points⟩. Once again, the list of points
must be given in the following way :

(x1,y1);(x2,y2);(x3,y3);...;(xn,yn)

\buildVoronoiBW{(0.3,0.3);(1.5,1);(4,0);(4.5,2.5);(1.81,2.14);(2.5,0.5);(2.8,1.5);(0.1,2)

;(1.5,-0.3)}

15

4.1 The Options

There are several options to customize the drawing.

mode = int (default) or ext: this option allows to use either the previously described set
of points in the argument, or a file, containing, line by line (2 columns), the points. Such
a file looks like :

x1 y1

x2 y2

x3 y3

...

xn yn

bbox = none (default) or show: this option allows to draw the added points to form a bound-
ing box2 and the corresponding triangulation. By default, these points are removed at
the end of the algorithm.

color = ⟨value⟩ (default: black): The color of the drawing.

colorBbox = ⟨value⟩ (default: black): The color of the drawing for the elements (points
and triangles) belonging to the bounding box.

colorVoronoi = ⟨value⟩ (default: black): Thecolor of the drawing for the elements (points
and polygons) belonging to the Voronoi diagram.

print = none (default) or points: To label the vertices of the triangulation. Contrary to
the previous macros, where print=none, a dot is produced at each vertex (of the set of
points and on the circumcircle center which are the nodes of the Voronoi diagram).

meshpoint = ⟨value⟩ (default: P): The letter(s) used to label the vertices of the triangu-
lation. It is included in the math mode delimiters $...$. The bounding box points are
labeled with numbers 1 to 4 and with a star exponent.

circumpoint = ⟨value⟩ (default: P): The letter(s) used to label the vertices of the Voronoi
diagram. It is included in the math mode delimiters $...$.

tikz (boolean, default:false): By default, this boolean is set to false, andMetaPost (with
luamplib) is used to draw the picture. With this option, tikz becomes the drawing
engine.

scale = ⟨value⟩ (default: 1cm): The scale option defines the scale at which the picture is
drawn (the same for both axes). It must contain the unit of length (cm, pt, etc.).

2The bounding box is defined by four points place at 15% around the box defined by (𝑥min, 𝑦min), (𝑥min, 𝑦max),
(𝑥max, 𝑦max), and (𝑥min, 𝑦max). It is used by the algorithm and will be computed in any case.

16

4.2 The inc variant

Once again, a variant of the macros is available allowing the user to add code before and after
the code produced by luamesh. We refer to the section 3 because it works the same way.
Let us note that:

• with MetaPost, the circumcenters are defined using pair CircumPoints[];, and so, are
accessible.

• With tikz, there are new coordinates defined as follows

\coordinate (CircumPoints1) at (...,...);

\coordinate (CircumPoints2) at (...,...);

\coordinate (CircumPoints3) at (...,...);

% etc.

Finally, when the MetaPost drawing engine is used, another color is available (see 3.1.1):
\luameshmpcolorVoronoi.

5 With Gmsh

Gmsh is a open source efficient software that produces meshes. The exporting format is the
MSH ASCII file format and can be easily read by a Lua program. luamesh provides the user
with dedicated macros to read and draw meshes coming from a Gmsh exportation.

\drawGmsh[⟨options⟩]{⟨file name⟩}

This macro draw the triangulation produced by Gmsh and exported in the msh format. The
argument is the name of the file to read (e.g.: maillage.msh).

\drawGmsh{maillage.msh}

There are several options to customize the drawing.

color = ⟨value⟩ (default: black): The color of the drawing.

print = none (default) or points: To label the vertices of the triangulation. Contrary to
the previous macros, where print=none, a dot is produced at each vertex (of the set of
points and on the circumcircle center which are the nodes of the Voronoi diagram).

17

meshpoint = ⟨value⟩ (default: P): The letter(s) used to label the vertices of the triangu-
lation. It is included in the math mode delimiters $...$. The bounding box points are
labeled with numbers 1 to 4 and with a star exponent.

tikz (boolean, default:false): By default, this boolean is set to false, andMetaPost (with
luamplib) is used to draw the picture. With this option, tikz becomes the drawing
engine.

scale = ⟨value⟩ (default: 1cm): The scale option defines the scale at which the picture is
drawn (the same for both axes). It must contain the unit of length (cm, pt, etc.).

Here is an example:

\drawGmsh[scale=2cm,print=points, color=blue!30]{maillage.msh}

𝑃1 𝑃2

𝑃3 𝑃4 𝑃5
𝑃6

𝑃7
𝑃8

𝑃9

𝑃10

𝑃11

𝑃12𝑃13

𝑃14

𝑃15

𝑃16

𝑃17

𝑃18𝑃19𝑃20𝑃21𝑃22

𝑃23

𝑃24

𝑃25

𝑃26

𝑃27

𝑃28

𝑃29 𝑃30

𝑃31

𝑃32
𝑃33

𝑃34

𝑃35

𝑃36 𝑃37

𝑃38

𝑃39

𝑃40

𝑃41𝑃42

𝑃43

𝑃44

𝑃45
𝑃46

𝑃47

𝑃48

𝑃49

𝑃50

5.1 Gmsh and Voronoi Diagrams

Because Gmsh generates Delaunay triangulations, we can plot the Voronoi diagram associated.
This is done by the following macro:

\gmshVoronoi[⟨options⟩]{⟨file name⟩}

\gmshVoronoi{maillage.msh}

18

We refer to the section 4.1 for the list of the options.

5.2 The inc variants

Once again, there exists inc variant macros:

\drawGmshinc[⟨options⟩]{⟨file name⟩}{⟨code before⟩}{⟨code after⟩}
\gmshVoronoiinc[⟨options⟩]{⟨file name⟩}{⟨code before⟩}{⟨code after⟩}

We refer to the previous sections for explanations.

6 Gallery

6.1 With Animate

If you use adobe acrobat reader, you can easily produce an animation of the Bowyer andWatson
algorithm with the package animate.
For example, the following code (in a file name animation.tex):

\documentclass{article}

%% lualatex compilation

\usepackage[margin=2.5cm]{geometry}

\usepackage{luamesh}

\usepackage{fontspec}

\usepackage{multido}

\pagestyle{empty}

\def\drawPath{draw (-2,-2)*u--(8,-2)*u--(8,6)*u--(-2,6)*u--cycle withcolor 0.99white;}

\def\clipPath{clip currentpicture to (-2,-2)*u--(8,-2)*u--(8,6)*u--(-2,6)*u--cycle;}

\begin{document}

\drawPointsMeshinc[

mode=ext,

bbox = show,

colorBbox = blue!20,

print=points

]

{mesh.txt}%

{%

beginfig(0);

19

\drawPath

}%

{%

\clipPath

endfig;

}

\newpage

\buildMeshBWinc[

mode=ext,

bbox = show,

colorBbox = blue!20,

print=points

]

{meshInit.txt}%

{%

beginfig(0);

\drawPath

}%

{%

\clipPath

endfig;

}

\multido{\ii=5+1}{4}{%

\newpage

\meshAddPointBWinc[

mode=ext,step=badtriangles,

colorNew =green!20!red,

colorBack=red!10,

colorCircle = blue,

bbox = show,

colorBbox = blue!20

]

{mesh.txt}{\ii}%

{%

beginfig(0);

\drawPath

}%

{%

\clipPath

endfig;

} \newpage

\meshAddPointBWinc[

mode=ext,step=cavity,

colorNew =green!20!red,

colorBack=red!10,

colorCircle = blue,

bbox = show,

colorBbox = blue!20

]

{mesh.txt}{\ii}%

{%

beginfig(0);

\drawPath

20

}%

{%

\clipPath

endfig;

} \newpage

\meshAddPointBWinc[

mode=ext,step=newtriangles,

colorNew =green!20!red,

colorBack=red!10,

colorCircle = blue,

bbox = show,

colorBbox = blue!20]

{mesh.txt}{\ii}%

{%

beginfig(0);

\drawPath

}%

{%

\clipPath

endfig;

}

}

\newpage

\buildMeshBWinc[

mode=ext,

bbox = show,

colorBbox = blue!20,

print=points

]

{mesh.txt}%

{%

beginfig(0);

\drawPath

}%

{%

\clipPath

endfig;

}

\newpage

\buildMeshBWinc[

mode=ext,

print=points

]

{mesh.txt}%

{%

beginfig(0);

\drawPath

}%

{%

\clipPath

endfig;

}

\end{document}

21

produces a PDF with multiple pages. Using the pdfcrop program, we crop the pages to the
material, and then we can animate the PDF using the animate package.

References

[1] A. Bowyer. Computing Dirichlet tessellations. Comput. J., 24(2):162–166, 1981.

[2] Pascal Jean Frey and Paul-Louis George. Mesh generation. ISTE, London; John Wiley &
Sons, Inc., Hoboken, NJ, second edition, 2008. Application to finite elements.

[3] Christophe Geuzaine and Jean-Francois Tantau Remacle. Gmsh Reference Manual, 2016. v.
2.14.

[4] Alexander Grahn. The animate Package, 2016.

[5] Hans Hagen, Taco Hoekwater, Élie Roux, Manuel Pégourié-Gonnard, Philipp Gesang, and
Dohyun Kim. luamplib – Use LuaTeX’s built-in METAPOST interpreter, 2016. v. 2.11.3.

[6] Till Tantau and Christian Feuersänger. pgf – Create PostScript and PDF graphics in TeX,
2015. v. 3.0.1a.

[7] D. F. Watson. Computing the 𝑛-dimensional Delaunay tessellation with application to
Voronoĭ polytopes. Comput. J., 24(2):167–172, 1981.

22

	Installation
	With TeXlive and Linux or Mac OSX
	With MikTeX and Windows
	A LuaLaTeX package
	Dependencies

	The Basic Macros
	Draw a Complete Mesh
	The Options

	Draw the Set of Points
	The Options

	Draw a Step of the Bowyer and Watson Algorithm
	The Options

	The inc Macros
	With MetaPost
	The LaTeX Colors Inside the MetaPost Code
	The Mesh Points
	Examples

	With TikZ
	The Mesh Points
	Examples

	Voronio Diagrams
	The Options
	The inc variant

	With Gmsh
	Gmsh and Voronoi Diagrams
	The inc variants

	Gallery
	With Animate

