\section{The object \texttt{point}} \subsection{Definition via coordinates} The object \Lkeyword{point} defines a \Index{point}. The simplest method is to use the argument \texttt{\Lkeyword{args}=$x$ $y$ $z$} to specify its coordinates. If we have already named a point $M(x, y, z)$ (see chapter ``\textit{Advanced usage\/}''), we can easily use the argument \texttt{args=$M$}. \subsection{Some other definitions} There are some other possibilities for defining a point. Here a list of possible definitions with the appropriate arguments: \begin{itemize} \item \texttt{\Lkeyword{definition}=\Lkeyval{solidgetsommet}}; \texttt{\Lkeyword{args}= $solid$ $k$}. The vertex with index $k$ of the solid $solid$. \item \texttt{\Lkeyword{definition}=\Lkeyval{solidcentreface}}; \texttt{\Lkeyword{args}=$solid$ $k$}. The centre of the face with index $k$ of the solid $solid$. \item \texttt{\Lkeyword{definition}=\Lkeyval{isobarycentre3d}}; \texttt{\Lkeyword{args}=\{[ $A_0$ $\ldots $ $A_{n}$ ]\}}. {The isobarycentre of the system $[(A_0, 1); \ldots ; (A_n, 1)]$.} \item \texttt{\Lkeyword{definition}=\Lkeyval{barycentre3d}}; \Lkeyword{args}= \{[ $A$ $a$ $B$ $b$ ] \}. {The barycentre of the system $[(A, a) ; (B, b)]$.} \item \texttt{\Lkeyword{definition}=\Lkeyval{hompoint3d}}; \texttt{\Lkeyword{args}={$M$ $A$ $\alpha $}}. {The image of $M$ via a homothety with centre $A$ and ratio $\alpha $.} \item \texttt{\Lkeyword{definition}=\Lkeyval{sympoint3d}}; \texttt{\Lkeyword{args}= {$M$ $A$}}. {The image of $M$ via the center of symmetry $A$}%I don't understand \item \texttt{\Lkeyword{definition}=\Lkeyval{translatepoint3d}}; \texttt{\Lkeyword{args}= {$M$ $u$}}. {The image of $M$ under the translation via the vector $\vec u$} \item \texttt{\Lkeyword{definition}=\Lkeyval{scaleOpoint3d}}; \texttt{\Lkeyword{args}= {$x$ $y$ $z$ $k_1$ $k_2$ $k_3$}}. {This gives a ``dilation'' \ of the coordinates of the point $M (x, y, z)$ on the axes $Ox$, $Oy$ and $Oz$ each multiplied by an appropriate factor $k_1$, $k_2$ and $k_3$} \item \texttt{\Lkeyword{definition}=\Lkeyval{rotateOpoint3d}}; \texttt{\Lkeyword{args}= {$M$ $\alpha_x$ $\alpha_y$ $\alpha_z$}}. {The image of $M$ through consecutive rotations---centered at $O$---and with respective angles $\alpha_x$, $\alpha_y$ and $\alpha_z$ around the axes $Ox$, $Oy$ and $Oz$.} %% Projection orthogonale d'un point 3d sur un plan %% Mx My Mz (=le point a projeter) %% Ax Ay Az (=un point du plan) %% Vx Vy Vz (un vecteur normal au plan) \item \Lkeyword{definition}=\Lkeyval{orthoprojplane3d}; \texttt{\Lkeyword{args}= {$M$ $A$ $\vec v$}}. {The projection of the point $M$ to the plane $P$ which is defined by the point $A$ and the vector $\vec v$, perpendicular to $P$.} \item \texttt{\Lkeyword{definition}=\Lkeyval{milieu3d}}; \texttt{\Lkeyword{args}= {$A$ $B$}}. {The midpoint of $[AB]$} \item \texttt{\Lkeyword{definition}=\Lkeyval{addv3d}}; \texttt{\Lkeyword{args}= {$A$ $u$}}. {Gives the point $B$ so that $\overrightarrow {AB} = \vec u$} \end{itemize} \endinput