\section{Points} \subsection{Direct definition} The object \Lkeyword{point} defines a \Index{point}. The values $(x,y)$ of its coordinates can be passed directly to the macro \Lcs{psProjection} or indirectly via the option \Lkeyword{args}. Thus the two commands \verb+\psProjection[object=point](1,2)+ and \verb+\psProjection[object=point,arg=1 2]+ are equivalent and lead to the projection of the point with coordinates $(1,2)$ onto the chosen plane. \subsection{Labels} The option \texttt{\Lkeyword{text}=my text} allows us to project a string of characters onto the chosen plane next to a chosen point. The positioning is made with the argument \texttt{\Lkeyword{pos}=value} where \texttt{value} is one of the following $\{$ul, cl, bl, dl, ub, cb, bb, db, uc, cc, bc, dc, ur, cr, br, dr$\}$. The details of the parameter \Lkeyword{pos} will be discussed in a later paragraph. \begin{LTXexample}[width=7.5cm] \begin{pspicture}(-3,-3)(4,3.5)% \psframe*[linecolor=blue!50](-3,-3)(4,3.5) \psset{viewpoint=50 30 15,Decran=60} \psset{solidmemory} %% definition du plan de projection \psSolid[object=plan, definition=equation, args={[1 0 0 0] 90}, name=monplan, planmarks, showBase] \psset{plan=monplan} %% definition du point A \psProjection[object=point, args=-2 1, text=A, pos=ur] \psProjection[object=point, text=B, pos=ur](2,1) \composeSolid \axesIIID(4,2,2)(5,4,3) \end{pspicture} \end{LTXexample} \subsection{Naming and memorising a point} If the option \texttt{\Lkeyword{name}=myName} is given, the coordinates $(x,y)$ of the chosen point are saved under the name \texttt{myName} and so can be reused. \subsection{Some other definitions} There are other methods to define a point in 2D. The options \Lkeyword{definition} and \Lkeyword{args} support the following methods: \begin{itemize} \item \texttt{\Lkeyword{definition}=\Lkeyval{milieu}}; \texttt{\Lkeyword{args}=$A$ $B$}. The midpoint of the line segment $[AB]$ \item \texttt{\Lkeyword{definition}=\Lkeyval{parallelopoint}}; \texttt{\Lkeyword{args}=$A$ $B$ $C$}. The point $D$ for which $(ABCD)$ is a parallelogram. \item \texttt{\Lkeyword{definition}=\Lkeyval{translatepoint}}; \texttt{\Lkeyword{args}=$M$ $u$}. The image of the point $M$ shifted by the vector $\vec u$ \item \texttt{\Lkeyword{definition}=\Lkeyval{rotatepoint}}; \texttt{\Lkeyword{args}=$M$ $I$ $r$}. The image of the point $M$ under a rotation about the point $I$ through an angle $r$ (in degrees) \item \texttt{\Lkeyword{definition}=\Lkeyval{hompoint}}; \texttt{\Lkeyword{args}=$M$ $A$ $k$}. The point $M'$ satisfying $\overrightarrow {AM'} = k \overrightarrow {AM}$ \item \texttt{\Lkeyword{definition}=\Lkeyval{orthoproj}}; \texttt{\Lkeyword{args}=+$M$ $d$}. The orthogonal projection of the point $M$ onto the line $d$. \item \texttt{\Lkeyword{definition}=\Lkeyval{projx}}; \texttt{\Lkeyword{args}=$M$}. The projection of the point $M$ onto the $Ox$ axis. \item \texttt{\Lkeyword{definition}=\Lkeyval{projy}}; \texttt{\Lkeyword{args}=$M$}. The projection of the point $M$ onto the $Oy$ axis. \item \texttt{\Lkeyword{definition}=\Lkeyval{sympoint}}; \texttt{\Lkeyword{args}=$M$ $I$}. The point of symmetry of $M$ with respect to the point $I$. \item \texttt{\Lkeyword{definition}=\Lkeyval{axesympoint}}; \texttt{\Lkeyword{args}=$M$ $d$}. The axially symmetrical point of $M$ with respect to the line $d$. \item \texttt{\Lkeyword{definition}=\Lkeyval{cpoint}}; \texttt{\Lkeyword{args}=$\alpha $ $C$}. The point corresponding to the angle $\alpha $ on the circle $C$ \item \texttt{[definition=xdpoint]}; \verb+args=+$x$ $d$. The $Ox$ intercept $x$ of the line $d$. \item \texttt{\Lkeyword{definition}=\Lkeyval{ydpoint}}; \texttt{\Lkeyword{args}=$y$ $d$}. The $Oy$ intercept $y$ of the line $d$. \item \texttt{\Lkeyword{definition}=\Lkeyval{interdroite}}; \texttt{\Lkeyword{args}=$d_1$ $d_2$}. The intersection point of the lines $d_1$ and $d_2$. \item \texttt{\Lkeyword{definition}=\Lkeyval{interdroitecercle}}; \texttt{\Lkeyword{args}=$d$ $I$ $r$}. The intersection points of the line $d$ with a circle of centre $I$ and radius $r$. \end{itemize} In the example below, we define and name three points $A$, $B$ and $C$, and then calculate the point $D$ for which $(ABCD)$ is a parallelogram together with the centre of this parallelogram. \begin{LTXexample}[width=7.5cm] \begin{pspicture}(-3,-3)(4,3.5)% \psframe*[linecolor=blue!50](-3,-3)(4,3.5) \psset{viewpoint=50 30 15,Decran=60} \psset{solidmemory} %% definition du plan de projection \psSolid[object=plan, definition=equation, args={[1 0 0 0] 90}, name=monplan, planmarks, showbase] \psset{plan=monplan} %% definition du point A \psProjection[object=point, text=A,pos=ur,name=A](-1,.7) %% definition du point B \psProjection[object=point, text=B,pos=ur,name=B](2,1) %% definition du point C \psProjection[object=point, text=C,pos=ur,name=C](1,-1.5) %% definition du point D \psProjection[object=point, definition=parallelopoint, args=A B C, text=D,pos=ur,name=D] %% definition du point G \psProjection[object=point, definition=milieu, args=D B] \composeSolid \axesIIID(4,2,2)(5,4,3) \end{pspicture} \end{LTXexample} \endinput