\section {The predefined solids and their parameters} The basic command is:~ \texttt{\Lcs{psSolid}[object=\textsl{name}]$(x, y ,z)$} which allows us to translate the chosen object to the point with the coordinates $(x, y, z)$. The available predefined names for the objects are: \begin{sloppypar} {\ttfamily%\flushleft \hyphenchar\font`\-% point, line, vector, plan, grille, cube, cylindre, cylindrecreux, cone, conecreux, tronccone, troncconecreux, sphere, calottesphere, calottespherecreuse, tore, tetrahedron, octahedron, dodecahedron, isocahedron, anneau, prisme, prismecreux, parallelepiped, face, polygonregulier, ruban, surface, surface*, surfaceparamettree, pie, fusion, geode, load, offfile, objfile, datfile, new.} \end{sloppypar} The following table gives an example of every one of the above named solids with their specified parameters: \begin{center} \begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{5cm}} \hline \toptableau \\\hline \Index{Point}& \begin{tabular}{c} \texttt{[args=1 1 0]}\\ coordinates \end{tabular} & \begin{pspicture}(-2,-2)(2,2) \psset{lightsrc=10 5 20,viewpoint=50 20 30 rtp2xyz} \psSolid[object=point,args=1 1 0]% \axesIIID(1.5,1.5,1) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[object=point, args=1 1 0]% \end{verbatim} \end{minipage} \\\hline \Index{Line}& \begin{tabular}{c} \texttt{[args=0 -1 0 1 2 2]}\\ coordinates of the\\ end points \end{tabular} & \begin{pspicture}(-2,-2)(2,2) \psset{lightsrc=10 5 20,viewpoint=50 20 30 rtp2xyz} \psSolid[object=line,args=0 -1 0 1 2 2] \axesIIID(1.5,1.5,1) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[object=line, args=0 -1 0 1 2 2] \end{verbatim} \end{minipage} \\\hline \Index{Vector}& \begin{tabular}{c} \texttt{[args=1 2 2]}\\ components of\\ the vector \end{tabular} & \begin{pspicture}(-2,-2)(2,2) \psset{lightsrc=10 5 20,viewpoint=50 20 30 rtp2xyz} \psSolid[object=vecteur,args=1 2 2] \axesIIID(1.5,1.5,1) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[object=vecteur, args=1 2 2] \end{verbatim} \end{minipage} \\\hline \Index{Plane}& \begin{tabular}{c} \texttt{[base=-x x -y y]}\\ range of plane\\ \texttt{args={[0 0 1 0]}}\\ equation of plane \end{tabular} & \begin{pspicture}(-2,-2)(2,2) \psset{lightsrc=10 5 20,viewpoint=50 20 30 rtp2xyz} \psSolid[object=plan, definition=equation, args={[0 0 1 0]}, base=-1 1 -1.5 1.5] \axesIIID(1.5,1.5,1) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[object=plan, definition=equation, args={[0 0 1 0]}, base=-1 1 -1.5 1.5] \end{verbatim} \end{minipage} \\\hline \end{tabular} \end{center} \begin{center} \begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{5cm}} \hline \toptableau \\\hline \Index{Cube}& \begin{tabular}{c} \texttt{[a=4]}\\ edge's length \end{tabular} & \begin{pspicture}(-2,-2)(2,2) \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} \psset{Decran=60} \psSolid[ object=cube,a=2,action=draw*,fillcolor=magenta!20]% \axesIIID(1,1,1)(1.5,1.5,1.5) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=cube, a=2, action=draw*, fillcolor=magenta!20] \end{verbatim} \end{minipage} \\\hline \Index{Cylinder}& \begin{tabular}{c} \texttt{[h=6,r=2]}\\ height and radius\\ grid:\\ \texttt{[ngrid=n1 n2]} \end{tabular} & \begin{pspicture}(-2,-2.5)(2,3) \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} \psset{Decran=30} \psSolid[object=cylindre,h=5,r=2,fillcolor=white,ngrid=4 32](0,0,-3) \axesIIID(2,2,2.5)(3,3,3.5) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=cylindre, h=5,r=2, fillcolor=white, ngrid=4 32] (0,0,-3) \end{verbatim} \end{minipage} \\\hline \Index{Hollow Cylinder}& \begin{tabular}{c} \texttt{[h=6,r=2]}\\ height and radius\\ grid:\\ \texttt{[ngrid=n1 n2]} \end{tabular} & \begin{pspicture}(-2,-2.5)(2,3) \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} \psset{Decran=30} \psSolid[object=cylindrecreux,h=5,r=2,fillcolor=white,mode=4,incolor=green!50](0,0,-2.5) \axesIIID(2,2,2.5)(3,3,4.5) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=cylindrecreux, h=5,r=2, fillcolor=white, mode=4, incolor=green!50] (0,0,-3) \end{verbatim} \end{minipage} \\\hline \end{tabular} \end{center} \begin{center} \begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{5cm}} \hline \toptableau \\\hline \Index{Cone}& \begin{tabular}{c} \texttt{[h=6,r=2]}\\ height and radius\\ grid:\\ \texttt{[ngrid=n1 n2]} \end{tabular} & \begin{pspicture}(-2,-1)(2,4) \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} \psset{Decran=30} \psSolid[object=cone,h=5,r=2,fillcolor=cyan,mode=4]% \axesIIID(2,2,5)(2.5,2.5,6) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=cone, h=5,r=2, fillcolor=cyan, mode=4]% \end{verbatim} \end{minipage} \\\hline \Index{Hollow Cone}& \begin{tabular}{c} \texttt{[h=6,r=2]}\\ height and radius\\ grid:\\ \texttt{[ngrid=n1 n2]} \end{tabular} & \begin{pspicture}(-2,-1)(2,4) \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} \psset{Decran=30} \psSolid[object=conecreux,h=5,r=2,fillcolor=white,mode=4,RotY=-60,incolor=green!50]% \axesIIID(2,2,5)(2.5,2.5,6) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=conecreux, h=5,r=2, RotY=-60, fillcolor=white, incolor=green!50, mode=4]% \end{verbatim} \end{minipage} \\\hline \Index{Truncated Cone}& \begin{tabular}{c} \texttt{[h=6,r0=4,r1=1.5]}\\ height and radii\\ grid:\\ \texttt{[ngrid=n1 n2]} \end{tabular} & \begin{pspicture}(-2,-1)(2,4) \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} \psset{Decran=30} \psSolid[object=tronccone,r0=2,r1=1.5,h=5,fillcolor=cyan,mode=4]% \axesIIID(2,2,5)(2.5,2.5,6) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=tronccone, r0=2,r1=1.5,h=5, fillcolor=cyan, mode=4]% \end{verbatim} \end{minipage} \\\hline \begin{tabular}{c} Truncated \\ Hollow Cone \end{tabular} & \begin{tabular}{c} \texttt{[h=6,r0=4,r1=1.5]}\\ height and radii\\ grid:\\ \texttt{[ngrid=n1 n2]} \end{tabular} & \begin{pspicture}(-2,-1)(2,4) \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} \psset{Decran=30} \psSolid[object=troncconecreux,r0=2,r1=1,h=5,fillcolor=white,mode=4]% \axesIIID(2,2,5)(2.5,2.5,6) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=troncconecreux, r0=2,r1=1,h=5, fillcolor=white, mode=4]% \end{verbatim} \end{minipage} \\\hline \end{tabular} \end{center} %\newpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} %\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{5cm}} \begin{tabular}{ >{\bfseries\sffamily\color{blue}} l >{\centering} m{4cm} m{4cm} m{5cm}} \hline \toptableau \\\hline \Index{Sphere} & \begin{tabular}{c} \texttt{[r=2]}\\ radius\\ grid:\\ \texttt{[ngrid=n1 n2]} \end{tabular} & \begin{pspicture}(-2,-2)(2,3) \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} \psset{Decran=30} \psSolid[object=sphere,r=3,fillcolor=red!25,ngrid=18 18,linewidth=0.2\pslinewidth]% \axesIIID(3,3,3)(4,4,4) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=sphere, r=2,fillcolor=red!25, ngrid=18 18]% \end{verbatim} \end{minipage} \\\hline \begin{tabular}{c} Spherical \\ zone \end{tabular} & \begin{tabular}{c} \texttt{[r=2]} \\ radius\\ \texttt{[phi=0,theta=90]} \\ latitude for slicing\\ the zone respectively \\ from the bottom and top \\ \end{tabular} & \begin{pspicture}(-2,-3)(5,3) \psset{unit=0.5cm} \psset{lightsrc=42 24 13,viewpoint=50 30 15 rtp2xyz,Decran=50} \psSolid[object=calottesphere,r=3,ngrid=16 18, fillcolor=cyan!50,incolor=yellow,theta=45,phi=-30,hollow,RotY=-80]% \axesIIID(0,3,3)(6,5,4) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=calottesphere, r=3,ngrid=16 18, theta=45,phi=-30, hollow,RotY=-80]% \end{verbatim} \end{minipage} \\\hline \Index{Torus} & \begin{tabular}{c} \texttt{[r0=4,r1=1.5]} \\ inner radius\\ mean radius\\ grid:\\ \texttt{[ngrid=n1 n2]} \end{tabular} & \begin{pspicture}(-2,-2)(2,2.35) \psset{lightsrc=42 24 13,viewpoint=50 30 15 rtp2xyz} \psset{Decran=30,unit=0.9cm} \psSolid[r1=2.5,r0=1.5,object=tore,ngrid=18 36,fillcolor=green!30,action=draw**]% \axesIIID(4,4,0)(5,5,4) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ r1=2.5,r0=1.5, object=tore, ngrid=18 36, fillcolor=green!30, action=draw*]% \end{verbatim} \end{minipage} \\\hline \begin{tabular}{c} Cylindric \\ Ring \end{tabular} & \begin{tabular}{c} \texttt{[R=4,r=3}\\ inner and outer radius\\ \texttt{h=6,section=...]}\\ height\\ cross \\ section \end{tabular} & \begin{pspicture}(-2,-2)(2,2.35) %\psset{unit=0.44cm} \psset{lightsrc=42 24 13,viewpoint=50 30 15 rtp2xyz} \psset{Decran=30} \psSolid[object=anneau,fillcolor=yellow,h=1.5,R=4,r=3]% \axesIIID(4,4,0)(5,5,4) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=anneau, fillcolor=yellow, h=1.5,R=4,r=3]% \end{verbatim} \end{minipage} \\\hline \end{tabular} \end{center} \begin{center} %\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{6cm}} \begin{tabular}{ >{\bfseries\sffamily\color{blue}} l >{\centering} m{4cm} m{4cm} m{5cm}} \hline \toptableau \\\hline \Index{Tetrahedron}& \begin{tabular}{c} \texttt{[r=2]}\\ radius of the\\ circumscribed sphere \end{tabular} & \begin{pspicture}(-2,-2)(2,2) \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} \psset{Decran=30} \psSolid[object=tetrahedron,r=3,linecolor=blue,action=draw]% \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=tetrahedron, r=3, linecolor=blue, action=draw]% \end{verbatim} \end{minipage} \\\hline \Index{Octahedron} & \begin{tabular}{c} \texttt{[a=2]}\\ radius of the\\ circumscribed sphere \end{tabular} & \begin{pspicture}(-2,-1.85)(2,2.85) \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} \psset{Decran=30} \psSolid[object=octahedron,a=3,linecolor=blue,fillcolor=Turquoise]% \axesIIID(3,3,3)(4,4,4) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=octahedron, a=3, linecolor=blue, fillcolor=Turquoise]% \end{verbatim} \end{minipage} \\\hline \Index{Dodecahedron} & \begin{tabular}{c} \texttt{[a=2]}\\ radius of the\\ circumscribed sphere \end{tabular} & \begin{pspicture}(-2,-1.85)(2,1.85) \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} \psset{Decran=30} \psSolid[object=dodecahedron,a=2.5,RotZ=90,action=draw*,fillcolor=OliveGreen]% \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=dodecahedron, a=2.5,RotZ=90, action=draw*, fillcolor=OliveGreen]% \end{verbatim} \end{minipage} \\ \hline \Index{Icosahedron} & \begin{tabular}{c} \texttt{[a=2]}\\ radius of the\\ circumscribed sphere \end{tabular} & \begin{pspicture}(-2,-1.85)(2,2.85) \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} \psset{Decran=30} \psSolid[object=icosahedron,a=3,action=draw*,fillcolor=green!50]% \axesIIID(3,3,3)(4,4,4) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=icosahedron, a=3, action=draw*, fillcolor=green!50]% \end{verbatim} \end{minipage} \\\hline \Index{Prism} & \begin{tabular}{c} \texttt{[axe=0 0 1]}\\ direction of the axis\\ \texttt{[base=}\\ \texttt{-1 -1 1 -1 0 1]}\\ coordinates of\\ the vertices\\ of the base\\ \texttt{[h=6]}\\ height \end{tabular} & \begin{pspicture}(-2,-2)(2,3) \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} \psset{Decran=30,unit=0.9cm} \psSolid[object=prisme,action=draw*,linecolor=red,h=4,fillcolor=gray!50]% \psSolid[object=grille,base=-3 3 -3 3,action=draw]% \axesIIID(3,3,4)(5,5,5) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=prisme, action=draw*, linecolor=red, h=4]% \end{verbatim} \end{minipage} \\\hline \end{tabular} \end{center} %\newpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} %\psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} %\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{6cm}} \begin{tabular}{ >{\bfseries\sffamily\color{blue}} l >{\centering} m{4cm} m{4cm} m{5cm}} \hline \toptableau \\\hline \Index{Grid} & \begin{tabular}{c} \texttt{[base=-X +X -Y +Y]} \end{tabular} & \begin{pspicture}(-1.5,-2)(2,3) \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} \psset{Decran=30,unit=0.9cm} \psSolid[object=grille,base=-5 5 -3 3]% \axesIIID(5,3,0)(6,4,4) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=grille, base=-5 5 -3 3]% \end{verbatim} \end{minipage} \\\hline % \Index{Cuboid} & \begin{tabular}{c} \texttt{[a=4,b=3,c=2]}\\ edge lenghts\\ with center in $O$ \end{tabular} & \begin{pspicture}(-1.5,-2)(2,3) \psset{lightsrc=10 20 30,viewpoint=50 20 30 rtp2xyz} \psset{Decran=30} \psSolid[object=parallelepiped,a=5,b=6,c=2,fillcolor=bleuciel,axe=1 1 1](0,0,c 2 div) \psSolid[object=grille,base=-2.5 2.5 -3 3,action=draw](0,0,2) \psSolid[object=grille,base=-1 1 -3 3,RotY=90,action=draw](2.5,0,1) \psSolid[object=grille,base=-2.5 2.5 -1 1,RotX=-90,action=draw](0,3,1) \axesIIID(2.5,3,2)(3.5,4,4) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=parallelepiped,% a=5,b=6,c=2, fillcolor=yellow]% (0,0,c 2 div) \end{verbatim} \end{minipage} \\\hline % \Index{Face} & \begin{tabular}{l} \texttt{[base=x0 y0 x1 y1}\\ \texttt{~ x2 y2 etc.]}\\ the coordinates \\ of the vertices \end{tabular} & \begin{pspicture}(-2,-2)(3,2) \psset{unit=0.4cm} \psset{viewpoint=50 -20 30 rtp2xyz,Decran=50} \psSolid[object=grille,base=-4 6 -4 4,action=draw,linecolor=gray](0,0,0) \psSolid[object=face,fillcolor=yellow, incolor=blue, base=0 0 3 0 1.5 3 ](0,1,0) \psSolid[object=face,fillcolor=yellow, incolor=blue, base=0 0 3 0 1.5 3, RotX=180](0,-1,0) \axesIIID(0,0,0)(6,6,3) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=face, fillcolor=yellow, incolor=blue, base=0 0 3 0 1.5 3 ](0,1,0) \psSolid[ object=face, fillcolor=yellow, incolor=blue, base=0 0 3 0 1.5 3, RotX=180](0,-1,0) \end{verbatim} \end{minipage} \\\hline % \Index{Strip} & \begin{tabular}{l} \texttt{[base=x0 y0 x1 y1}\\ \texttt{~ x2 y2 etc.]}\\ \texttt{[h=height]}\\ \texttt{[ngrid=value]}\\ number of gridlines\\ \texttt{[axe=0 0 1]}\\ direction of inclination\\ of the strip \end{tabular} & \begin{pspicture}(-2,-2)(5,3) \psset{lightsrc=10 0 10,viewpoint=50 -20 30 rtp2xyz,Decran=50,unit=0.5cm} \psSolid[object=grille,base=-4 6 -2 4,action=draw,linecolor=gray](0,0,0) \psSolid[object=ruban,h=3,fillcolor=red!50, base=0 0 2 2 4 0 6 2, num=0 1 2 3, show=0 1 2 3, ngrid=3]% \axesIIID(0,2,0)(6,6,6) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[ object=ruban,h=3, fillcolor=red!50, base=0 0 2 2 4 0 6 2, num=0 1 2 3, show=0 1 2 3, ngrid=3]) \end{verbatim} \end{minipage} \\\hline \end{tabular} \end{center} %\newpage %\begin{center} %\psset{lightsrc=10 20 30,SphericalCoor,viewpoint=50 20 30} %%\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{6cm}} %\begin{tabular}{ % >{\bfseries\sffamily\color{blue}} l % >{\centering} m{4cm} m{4cm} m{5cm}} % \hline %\toptableau %% chemin %% & %% \begin{tabular}{l} %% dessine un chemin\\ %% d\'{e}fini en postscript\\ %% sur un plan %% \end{tabular} %% & %% \psset{unit=0.4cm} %% \begin{pspicture}(-2,-5)(6,8)% %% \psframe*[linecolor=blue!50](-6,-5)(6,7) %% \psset{lightsrc=50 20 20,viewpoint=50 30 15,Decran=60} %% \psProjection[object=chemin,fillstyle=solid,fillcolor=white, %% linewidth=.05,linecolor=red, %% normal=1 1 2 180, %% path=newpath %% -4 -4 smoveto %% -4 4 slineto %% 4 4 slineto %% 4 -4 slineto %% closepath %% ](1,1,2) %% \psProjection[object=chemin, %% linewidth=.02, %% normal=1 1 2 180, %% path=newpath %% -4 1 4 %% {-4 exch smoveto %% 8 0 srlineto} for %% -4 1 4 %% {-4 smoveto %% 0 8 srlineto} for %% ](1,1,2) %% \psProjection[object=chemin,fillstyle=hlines,hatchcolor=yellow, %% linecolor=red, %% normal=1 1 2 180, %% path=newpath %% 2 0 moveto %% 0 2 360 { %% /x exch def %% x cos 2 mul %% x sin 2 mul %% slineto %% } for %% ](1,1,2) %% \psPoint(0,0,0){O} %% \psPoint(1,1,2){O1}\psPoint(1.4,1.4,2.8){K} %% \psline[linewidth=.1,linecolor=red](O1)(K) %% \psline[linestyle=dashed](O)(O1) %% \psProjection[object=chemin, %% linewidth=.1, %% linecolor=green, %% normal=1 1 2 180, %% path= %% newpath %% 0 0 smoveto %% 1 0 slineto](1,1,2) %% \psProjection[object=chemin, %% linewidth=.1, %% linecolor=blue, %% normal=1 1 2 180, %% path= %% newpath %% 0 0 smoveto %% 0 1 slineto](1,1,2) %% \axesIIID(4,4,2)(5,5,6) %% \end{pspicture} %% & %% \begin{minipage}{6cm} %% \begin{verbatim} %% \psProjection[object=chemin, %% fillstyle=hlines, %% hatchcolor=yellow, %% linecolor=red, %% normal=1 1 2 180, %% path=newpath %% 2 0 smoveto %% 0 2 360 { %% /x exch def %% x cos 2 mul %% x sin 2 mul %% slineto %% } for %% ](1,1,2) %% \end{verbatim} %% \end{minipage} %\end{tabular} %\end{center} %\newpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} %\begin{tabular}{>{\bfseries\sffamily\color{blue}}lcm{4cm}m{6cm}} \begin{tabular}{ >{\bfseries\sffamily\color{blue}} l >{\centering} m{4cm} m{4cm} m{5cm}} \hline \toptableau \\\hline \Index{Surface} & \begin{tabular}{l} see the related \\ paragraph in the \\ documentation \end{tabular} & \begin{pspicture}(-2,-3)(3,3) \psset{unit=0.4cm,lightsrc=30 30 25,viewpoint=50 40 30 rtp2xyz,Decran=50} \psSurface[ngrid=.25 .25,incolor=white,axesboxed](-4,-4)(4,4){% x dup mul y dup mul 3 mul sub x mul 32 div} \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSurface[ngrid=.25 .25, incolor=white,axesboxed] (-4,-4)(4,4){% x dup mul y dup mul 3 mul sub x mul 32 div} \end{verbatim} \end{minipage} \\\hline % \Index{New} & \begin{tabular}{l} solid defined\\ by the coordinates \\ of the vertices\\ and the vertices\\ of each face \end{tabular} & \begin{pspicture}(-2,-2)(2,4) \psset{unit=0.4cm} \psset{viewpoint=50 -20 30 rtp2xyz,Decran=50} \psSolid[object=new, action=draw, sommets= 2 4 3 -2 4 3 -2 -4 3 2 -4 3 2 4 0 -2 4 0 -2 -4 0 2 -4 0 0 4 5 0 -4 5, faces={ [0 1 2 3] [7 6 5 4] [0 3 7 4] [3 9 2] [1 8 0] [8 9 3 0] [9 8 1 2] [6 7 3 2] [2 1 5 6]}, num=all, show=all]% \axesIIID(0,0,0)(5,5,7) \end{pspicture} & \begin{minipage}{5cm} \begin{verbatim} \psSolid[object=new, action=draw, sommets= 2 4 3 -2 4 3 -2 -4 3 2 -4 3 2 4 0 -2 4 0 -2 -4 0 2 -4 0 0 4 5 0 -4 5, faces={ [0 1 2 3] [7 6 5 4] [0 3 7 4] [3 9 2] [1 8 0] [8 9 3 0] [9 8 1 2] [6 7 3 2] [2 1 5 6]}]% \end{verbatim} \end{minipage} \\\hline % \Index{Curve} & \begin{tabular}{l} curve of a function\\ $\mathbb{R} \rightarrow \mathbb{R}^3$\\ defined by its\\ paramterised equations\\ \end{tabular} & \begin{pspicture}(-2,-1)(1.75,2.7) \psset{unit=0.35cm} \psset{lightsrc=10 -20 50,viewpoint=50 -20 20 rtp2xyz,Decran=50} %\psframe*[linecolor=blue!50](-6,-3)(6,8) \psSolid[object=grille,base=-4 4 -4 4,linecolor=red,linewidth=0.5\pslinewidth]% \axesIIID(0,0,0)(4,4,7) \defFunction[algebraic]{helice}(t){3*cos(4*t)}{3*sin(4*t)}{t} \psSolid[object=courbe,r=0, range=0 6, linecolor=blue,linewidth=0.1, resolution=360, function=helice]% \end{pspicture} & \begin{minipage}{5cm} % \footnotesize \begin{verbatim} \defFunction[algebraic]% {helice}(t) {3*cos(4*t)}{3*sin(4*t)}{t} \psSolid[object=courbe,r=0, range=0 6, linecolor=blue, linewidth=0.1, resolution=360, function=helice]% \end{verbatim} \end{minipage} \\\hline %% courbeR2 %% & %% \begin{tabular}{l} %% trac\'{e} d'une fonction\\ %% R --> R\textsuperscript{2}\\ %% d\'{e}finie par ses\\ %% \'{e}quations param\'{e}triques\\ %% \end{tabular} %% & %% \psset{unit=0.4cm} %% \begin{pspicture}(-6,-7)(6,6) %% \psframe*[linecolor=yellow!50](-6,-6)(6,6) %% \psset{SphericalCoor,viewpoint=50 -20 30,Decran=50} %% {\psset{linewidth=0.5\pslinewidth,linecolor=gray} %% \psSolid[object=grille,base=-4 4 -4 0,RotX=90,RotZ=90]% %% \psSolid[object=grille,base=-4 4 -4 4]% %% \psSolid[object=grille,base=-4 4 0 4,RotX=90,RotZ=90]} %% \defFunction{parabole}(t){t}{t dup mul}{} %% \defFunction{droite}(t){t}{t 2 add }{} %% \axesIIID(0,0,0)(4,4,4) %% \psProjection[object=chemin, %% linewidth=.1, %% linecolor=blue, %% normal=0 1 0 1 0 0, %% path= %% newpath %% 0 0 moveto %% 1 0 lineto] %% \psProjection[object=chemin, %% linewidth=.1, %% linecolor=red, %% normal=0 1 0 1 0 0, %% path= %% newpath %% 0 0 moveto %% 0 1 lineto] %% \psProjection[object=courbeR2, %% range=-1 2,fillstyle=vlines,hatchwidth=0.5\pslinewidth, %% normal=0 1 0 1 0 0, %% function=parabole] %% \psProjection[object=courbeR2, %% range=-2 2, %% linecolor=green, %% normal=0 1 0 1 0 0, %% function=parabole] %% \psProjection[object=courbeR2, %% range=-2 2 , %% linecolor=red, %% normal=0 1 0 1 0 0, %% function=droite] %% \psPoint(0,0,4.15){Z1} %% \uput*[60](Z1){$z=y^2$} %% \rput(0,-6.5){\psframebox[linecolor=yellow!50]{\texttt{$\backslash${}defFunction\{parabole\}(t)\{t\}\{t dup mul\}\{\}}}} %% \end{pspicture} %% & %% \begin{minipage}{6cm} %% \footnotesize %% \begin{verbatim} %% \psProjection[object=courbeR2, %% range=-2 2, %% linecolor=green, %% normal=0 1 0 1 0 0, %% function=parabole] %% \end{verbatim} %% \end{minipage} %% \\\hline \end{tabular} \end{center} Some information about rings and parallelepipeds is available in the documents: \begin{itemize} \item \texttt{doc-grille-parallelepiped.tex(.pdf)}; \item \texttt{doc-anneau.tex(.pdf).} \end{itemize} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\newpage \endinput