\section{The option \texttt{transform}} The option \Lkeyword{transform}, which is nothing else than a formula $\mathbb{R}^3 \rightarrow \mathbb{R}^3$, which is applied to every point of the solid. In the first example, the object that accepts the transformation is a cube. The referenced cube is yellow, the transformed cube is green and the cube before the \Index{transformation} is setup with a reticule. \subsection{Identical scaling factor in the three coordinates} The scaling factor is set to $0.5$. It is either introduced within the PostScript variable `\texttt{/Facteur}': \begin{verbatim} \pstVerb{/Facteur {.5 mulv3d} def}% \end{verbatim} and then passed to the option \verb+transform+: \begin{verbatim} \psSolid[object=cube,a=2,ngrid=3, transform=Facteur](2,0,1)% \end{verbatim} or directly passed to the option: \begin{verbatim} \psSolid[object=cube,a=2,ngrid=3, transform={.5 mulv3d}](2,0,1)% \end{verbatim} Here the \textit{jps} abbreviation \texttt{transform=\{.5 mulv3d\}} for a function $\mathbb{R}^3 \rightarrow \mathbb{R}^3$ was used. Another method would be to use the code \begin{verbatim} \defFunction[algebraic]{matransformation}(x,y,z) {.5*x} {.5*y} {.5*z} \end{verbatim} and then pass it to the option \texttt{transform=matransformation}. \begin{LTXexample}[pos=t] \psset{viewpoint=20 60 20 rtp2xyz,lightsrc=viewpoint,Decran=20} \begin{pspicture}(-5,-3)(6,5) \psSolid[object=grille,base=-4 4 -4 4,fillcolor=red!50]% \axesIIID(0,0,0)(4,4,4)% \psSolid[object=cube,fillcolor=yellow!50, a=2,ngrid=3](-2,0,1) \psSolid[object=cube,fillcolor=green!50, a=2,transform={.5 mulv3d}, ngrid=3](2,0,1) \psSolid[object=cube, action=draw, a=2,ngrid=3](2,0,1) \end{pspicture} \end{LTXexample} \encadre{The scaling factor also affects the position coordinates of the cube's center.} \subsection{Different scaling factors for the three coordinates} Let's for example use a factor 0.75 for $x$, 4 for $y$ and 0.5 for $z$ using the function \texttt{scaleOpoint3d} from the \textit{jps} library---so a cube will be transformed to a cuboid. \begin{LTXexample}[pos=t] \psset{viewpoint=20 60 20 rtp2xyz,lightsrc=viewpoint,Decran=20} \begin{pspicture}(-5,-3)(6,5) \psSolid[object=grille,base=-4 4 -4 4,fillcolor=red!50]% \axesIIID(0,0,0)(4,4,4)% \psSolid[object=cube,fillcolor=yellow!50, a=2,ngrid=3](-2,0,1) \psSolid[object=cube,fillcolor=green!50, a=2,transform={.75 4 .5 scaleOpoint3d}, ngrid=3](2,0,1) \psSolid[object=cube, action=draw, a=2,ngrid=3](2,0,1) \end{pspicture} \end{LTXexample} \subsection{Transformation associated with the distance to the origin} Here an example applied to a cube: \begin{equation*} \left\lbrace\begin{aligned} x'&=\big(0.5\sqrt{x^2+y^2+z^2}+1-0.5\sqrt{3}\big)x \\ y'&=\big(0.5\sqrt{x^2+y^2+z^2}+1-0.5\sqrt{3}\big)y \\ z'&=\big(0.5\sqrt{x^2+y^2+z^2}+1-0.5\sqrt{3}\big)z \end{aligned}\right. \end{equation*} \begin{LTXexample}[width=7cm] \begin{pspicture}(-3,-4)(4,3) \psset{viewpoint=20 60 20 rtp2xyz,lightsrc=10 15 7,Decran=20} \pstVerb{ /gro { 4 dict begin /M defpoint3d /a .5 def /b 1 a 3 sqrt mul sub def /k M norme3d a mul b add def M k mulv3d end } def}% \psset{linewidth=.02,linecolor=gray} \psSolid[object=cube,a=3,ngrid=9, transform=gro]% \end{pspicture} \end{LTXexample} %\newpage \subsection{Bending and \Index{torsion} of beams} The solid to the left is a prism of the height 10 cm with 20 floors (\texttt{\Lkeyword{ngrid}=20 2}). In every floor, an additional angle of rotation---for example 10$^{\mathrm{o}}$ around the $Oz$ axis is---given. Now that the adjacent floors have a distance of $0.5$~cm, one multiplies $z\times20$. La flexion est envisag\'{e}e dans le plan $xOz$ sous l'action d'une force perpendiculaire \`{a} la poutre appliqu\'{e}e en son extr\'{e}mit\'{e}. \begin{LTXexample}[pos=t] \psset{viewpoint=100 50 20 rtp2xyz,lightsrc=viewpoint,Decran=100,unit=0.65} \begin{pspicture}(-3,-1)(3.5,11) \psSolid[object=grille,base=-2 2 -2 2,ngrid=8]% \psSolid[object=prisme,h=10,ngrid=20 2, base=0.5 0 0.5 0.5 0 0.5 -0.5 0.5 -0.5 0 -0.5 -0.5 0 -0.5 0.5 -0.5]% \end{pspicture} \begin{pspicture}(-3,-1)(3.5,11) \psSolid[object=grille,base=-2 2 -2 2,ngrid=8]% \pstVerb{ /torsion {% on tourne de 10 degr\'{e}s suivant l'axe Oz \`{a} chaque niveau 2 dict begin /M defpoint3d % on r\'{e}cup\`{e}re les coordonn\'{e}es M /z exch def pop pop M 0 0 z 20 mul rotateOpoint3d end} def}% \psSolid[object=prisme,h=10,ngrid=20 2, base=0.5 0 0.5 0.5 0 0.5 -0.5 0.5 -0.5 0 -0.5 -0.5 0 -0.5 0.5 -0.5, transform=torsion]% \psTransformPoint[RotZ=20](2 0 10)(0,0,0){A} \psTransformPoint[RotZ=20](2 1 10)(0,0,0){A'} \psTransformPoint[RotZ=20](-2 0 10)(0,0,0){B} \psTransformPoint[RotZ=20](-2 -1 10)(0,0,0){B'} \psline[linecolor=red]{v-v}(A')(A)(B)(B') \end{pspicture} \begin{pspicture}(-3.5,-1)(3,11) \psSolid[object=grille,base=-2 2 -2 2,ngrid=8]% \pstVerb{% id\'{e}e de Christophe Poulain /flexion {% on tourne de 2 degr\'{e}s suivant l'axe Oy \`{a} chaque niveau 2 dict begin /M defpoint3d % on r\'{e}cup\`{e}re les coordonn\'{e}es M /z exch def pop pop M 0 z 2 mul 0 rotateOpoint3d end} def}% \axesIIID(0,0,0)(3,3,10) \psSolid[object=prisme,h=10,ngrid=20 2, base=0.5 0 0.5 0.5 0 0.5 -0.5 0.5 -0.5 0 -0.5 -0.5 0 -0.5 0.5 -0.5, transform=flexion]% \psTransformPoint[RotY=20](0.5 0 10)(0,0,0){A} \psPoint(3 20 cos mul 20 sin 10 mul add 0.5 add,0, 20 cos 10 mul 20 sin 3 mul sub){A'} \psdot(A)\psline[linecolor=red]{-v}(A)(A') \end{pspicture} \end{LTXexample} \endinput