Some PSTricks macros for the study of refraction

Geometrical optics

MANUEL LUQUE and JÜRGEN GILG
September 13, 2011

1 HUYGENS' principle

Figure 1: Construction of the refracted ray

- 1. We draw the semi-circles (C_1) and (C_2) with the center at I with radii $r_1 = \frac{1}{n}$ and $r_2 = \frac{1}{n'}$, respectively.
- 2. We draw the extension of the incident ray which intersects (C_1) at I_1 .
- 3. We construct the tangent line to circle (C_1) at I_1 which intersects the incident plane at point A.
- 4. From point A we draw the line, tangent to the circle (C_2) . The point of tangency on (C_2) is denoted I_2 . This is how the path of the refracted ray is determined.

2 Law of refraction (SNELL'S LAW)

Figure 2: Incident and refracted wave fronts

From the geometry shown in the diagram above, we see, for the angle ε of the incident wave and the angle ε' of the refracting wave, that

$$\sin \varepsilon = \frac{AB}{CB} = \frac{c\Delta t}{CB} \quad \text{respectively} \quad \sin \varepsilon' = \frac{CD}{CB} = \frac{c'\Delta t}{CB}.$$

Division shows that

$$\frac{\sin \varepsilon}{\sin \varepsilon'} = \frac{c}{c'}.\tag{1}$$

For the speeds c and c' of the waves we get

$$c = \frac{c_{\text{vac}}}{n}$$
 respectively $c' = \frac{c_{\text{vac}}}{n'}$. (2)

Inserting (2) into equation (1) above, we see

$$\frac{\sin \varepsilon}{\sin \varepsilon'} = \frac{c}{c'} = \frac{c_{\text{vac}}}{n} \cdot \frac{n'}{c_{\text{vac}}} = \frac{n'}{n}$$

thus,

$$n \cdot \sin \varepsilon = n' \cdot \sin \varepsilon'. \tag{3}$$

Equation (3) is called SNELL'S LAW of refractions.

3 The used PStricks macros

3.1 HUYGENS' principle

The command is:

 $\Huygens{1.5}{60}$

The first argument is the *relative index of refraction* $\frac{n'}{n}$, and the second argument is the *angle of incidence* ε in degrees as shown in the figure 2 on page 3.

3.2 Law of refraction (SNELL'S LAW)

The command is:

\ondelettes{1.5}{60} % {relative index}{angle of incidence}

The first argument is the *relative index of refraction* $\frac{n'}{n}$, and the second argument is the *angle of incidence* ε in degrees as shown in the figure 1 on page 2.