Some PSTricks macros for the study of quantum mechanics

Energy levels of a harmonic potential

MANUEL LUQUE and JÜRGEN GILG
October 5, 2011

1 Energy levels of a harmonic potential

The harmonic potential is given as

$$V(x) = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2x^2 \qquad \omega = \sqrt{\frac{k}{m}}.$$

The depending SCHRÖDINGER equation in one dimension is

$$\frac{-\hbar^2}{2m} \frac{\mathrm{d}^2 \Psi(x)}{\mathrm{d}x^2} = (E - V(x))\Psi(x)$$

$$\frac{-\hbar^2}{2m} \frac{\mathrm{d}^2 \Psi(x)}{\mathrm{d}x^2} + \frac{1}{2} k x^2 \Psi(x) = E \Psi(x).$$
(1)

Using

$$a^2 = \frac{\hbar}{\sqrt{mk}} \quad \Rightarrow \quad \hbar^2 = a^4 mk$$

we get

$$\begin{split} & \frac{-a^4 m k}{2 m} \frac{\mathrm{d}^2 \Psi(x)}{\mathrm{d} x^2} + \frac{1}{2} k x^2 \Psi(x) = E \Psi(x) \\ & \frac{-a^4 k}{2} \frac{\mathrm{d}^2 \Psi(x)}{\mathrm{d} x^2} + \frac{1}{2} k x^2 \Psi(x) = E \Psi(x) \quad | \cdot \frac{2}{k} \\ & -a^4 \frac{\mathrm{d}^2 \Psi(x)}{\mathrm{d} x^2} + x^2 \Psi(x) = \frac{2E}{k} \Psi(x) \quad | : (-a^2) \\ & a^2 \frac{\mathrm{d}^2 \Psi(x)}{\mathrm{d} x^2} - \frac{x^2}{a^2} \Psi(x) = -\frac{2E}{a^2 k} \Psi(x). \end{split}$$

Using

$$\frac{2E}{a^2k} = \frac{2E}{\frac{\hbar}{\sqrt{mk}}k} = \frac{2E}{\hbar\omega} = E^*$$

we get

$$a^{2} \frac{d^{2} \Psi(x)}{dx^{2}} - \frac{x^{2}}{a^{2}} \Psi(x) = -E^{*} \Psi(x).$$
 (2)

Transformation of the variable

$$\xi = \frac{x}{a}.$$

The derivatives are

$$\frac{\mathrm{d}}{\mathrm{d}\xi} = a \frac{\mathrm{d}}{\mathrm{d}x}$$
$$\frac{\mathrm{d}^2}{\mathrm{d}\xi^2} = a^2 \frac{\mathrm{d}^2}{\mathrm{d}x^2}.$$

This finally leads to

$$\frac{\mathrm{d}^2\Psi(\xi)}{\mathrm{d}\xi^2} - \xi^2\Psi(\xi) = -E^*\Psi(\xi)$$

or

$$\frac{d^2\Psi(\xi)}{d\xi^2} + (E^* - \xi^2)\Psi(\xi) = 0.$$
 (3)

For large ξ^2 we can ignore E^* and get the *asymptotic equation*

$$\frac{\mathrm{d}^2\Psi(\xi)}{\mathrm{d}\xi^2} = \xi^2\Psi(\xi). \tag{4}$$

And since it is a second order differential equation, a possible solution is easy to see as

$$\Psi(\xi) = Ae^{-\frac{\xi^2}{2}} + Be^{\frac{\xi^2}{2}}.$$

To not diverge however into ∞ , we force B = 0, so the *asymptotic solution* to equation 4 is

$$\Psi(\xi) = A e^{-\frac{\xi^2}{2}}.$$

With *variation of the constant* we write $\Psi(\xi) = H(\xi)e^{-\frac{\xi^2}{2}}$ and solve the equation for $H(\xi)$. The two derivatives of $\Psi(\xi)$ are (using the product rule)

$$\begin{split} \Psi(\xi) &= H(\xi) \mathrm{e}^{-\frac{\xi^2}{2}} \\ \frac{\mathrm{d}\Psi(\xi)}{\mathrm{d}\xi} &= \left(\frac{\mathrm{d}H(\xi)}{\mathrm{d}\xi} - \xi H(\xi)\right) \mathrm{e}^{-\frac{\xi^2}{2}} \\ \frac{\mathrm{d}^2\Psi(\xi)}{\mathrm{d}\xi^2} &= \left(\frac{\mathrm{d}^2H(\xi)}{\mathrm{d}\xi^2} - H(\xi) - \xi \frac{\mathrm{d}H(\xi)}{\mathrm{d}\xi} - \xi \left(\frac{\mathrm{d}H(\xi)}{\mathrm{d}\xi} - \xi H(\xi)\right)\right) \mathrm{e}^{-\frac{\xi^2}{2}} \\ &= \left(\frac{\mathrm{d}^2H(\xi)}{\mathrm{d}\xi^2} - 2\xi \frac{\mathrm{d}H(\xi)}{\mathrm{d}\xi} + (\xi^2 - 1)H(\xi)\right) \mathrm{e}^{-\frac{\xi^2}{2}}. \end{split}$$

Inserting it into equation 3 we get

$$\begin{split} \left(\frac{\mathrm{d}^2 H(\xi)}{\mathrm{d}\xi^2} - 2\xi \frac{\mathrm{d}H(\xi)}{\mathrm{d}\xi} + (\xi^2 - 1)H(\xi)\right) \mathrm{e}^{-\frac{\xi^2}{2}} + (E^* - \xi^2)H(\xi)\mathrm{e}^{-\frac{\xi^2}{2}} &= 0 \quad |\cdot \mathrm{e}^{\frac{\xi^2}{2}} \\ \frac{\mathrm{d}^2 H(\xi)}{\mathrm{d}\xi^2} - 2\xi \frac{\mathrm{d}H(\xi)}{\mathrm{d}\xi} + (E^* - 1)H(\xi) &= 0. \end{split}$$

To solve the second order differential equation in $H(\xi)$ we develop a power series:

$$(E^* - 1)H(\xi) = (E^* - 1)\sum_{n=0}^{\infty} a_n \xi^n = \sum_{n=0}^{\infty} (E^* - 1)a_n \xi^n$$

$$-2\xi \frac{dH(\xi)}{d\xi} = -2\xi \sum_{n=1}^{\infty} a_n n \xi^{n-1} = \sum_{n=0}^{\infty} -2a_n n \xi^n$$

$$\frac{d^2H(\xi)}{d\xi^2} = \sum_{n=2}^{\infty} a_n n (n-1) \xi^{n-2} = \sum_{n=0}^{\infty} a_{n+2} (n+1)(n+2) \xi^n$$

Inserting it into equation 3

$$\sum_{n=0}^{\infty} a_{n+2}(n+1)(n+2)\xi^n + \sum_{n=0}^{\infty} -2a_n n \xi^n + \sum_{n=0}^{\infty} (E^* - 1)a_n \xi^n = 0$$
$$\sum_{n=0}^{\infty} \left(a_{n+2}(n+1)(n+2) + a_n (E^* - 1 - 2n) \right) \xi^n = 0.$$

This only can be zero for all ξ if

$$a_{n+2}(n+1)(n+2) + a_n(E^* - 1 - 2n) = 0.$$

Written as a fraction

$$\frac{a_{n+2}}{a_n} = \frac{2n+1-E^*}{(n+1)(n+2)}.$$

This however diverges for $n \to \infty$, so the power series must stop at a value n^* , where all following coefficients $n > n^*$ are zero. Thus

$$2n^* + 1 - E^* = 0 \implies E^* = 2n^* + 1 \text{ for } n^* = 0, 1, 2, \dots$$

We now see that the energy is quantized!

Resubstituting E^*

$$E^* = \frac{2E}{\hbar\omega}$$

and solving for E gives

$$\frac{2E}{\hbar\omega} = 2n^* + 1$$

$$E = \left(n^* + \frac{1}{2}\right)\hbar\omega = E_{n^*}.$$

The lowest possible energy we get for $n^* = 0$

$$E_0^* = \frac{1}{2}\hbar\omega,$$

and see this lowest energy is non-zero.

The energy difference ΔE between two adjacent energy levels is

$$\Delta E = E_{n^*+1} - E_{n^*} = \left(n^* + 1 + \frac{1}{2}\right)\hbar\omega - \left(n^* + \frac{1}{2}\right)\hbar\omega = \hbar\omega.$$

Now what are the polynomials $H(\xi)$? These are the well-known as the Hermite-polynoms. Thus the Eigenfunctions are determined as

$$\Psi_{n^*}(\xi) = N_{n^*} H_{n^*}(\xi) e^{-\frac{\xi^2}{2}},$$

where N_{n^*} (respectively a_0 , a_1) is determined by normalization (to be read in some further literature):

$$N_{n^*} = \frac{1}{\sqrt{2^{n^*}n^*!\sqrt{\pi}}}$$

thus

$$\Psi_{n^*}(\xi) = \frac{1}{\sqrt{2^{n^*}n^*!\sqrt{\pi}}} H_{n^*}(\xi) e^{-\frac{\xi^2}{2}}.$$

The Hermite-polynomes are generated with the following formula:

$$H_{n^*}(\xi) = (-1)^{n^*} e^{\xi^2} \frac{d^{n^*}}{dx^{n^*}} e^{-\xi^2} \quad n^* = 0, 1, 2, \dots$$

Explicitly we get:

$$H_0(\xi) = (-1)^0 e^{\xi^2} e^{-\xi^2} = 1$$

$$H_1(\xi) = (-1)^1 e^{\xi^2} \frac{d}{d\xi} e^{-\xi^2} = -e^{\xi^2} e^{-\xi^2} \cdot (-2\xi) = 2\xi$$

$$H_2(\xi) = (-1)^2 e^{\xi^2} \frac{d^2}{d\xi^2} e^{-\xi^2} = e^{\xi^2} e^{-\xi^2} \cdot (4\xi^2 - 2) = 4\xi^2 - 2$$

$$H_3(\xi) = (-1)^3 e^{\xi^2} \frac{d^3}{d\xi^3} e^{-\xi^2} = -e^{\xi^2} e^{-\xi^2} \cdot (-8\xi^3 + 12\xi) = 8\xi^3 - 12\xi$$

$$H_4(\xi) = \dots = 16\xi^4 - 48\xi^2 + 12$$

$$H_5(\xi) = \dots = 32\xi^5 - 160\xi^3 + 120\xi$$

$$H_6(\xi) = \dots = 64\xi^6 - 480\xi^4 + 720\xi^2 - 120$$

$$H_7(\xi) = \dots = 128\xi^7 - 1344\xi^5 + 3360\xi^3 - 1680\xi$$

$$H_8(\xi) = \dots = 256\xi^8 - 3584\xi^6 + 13440\xi^4 - 13440\xi^2 + 1680$$

$$H_9(\xi) = \dots = 512\xi^9 - 9216\xi^7 + 48384\xi^5 - 80640\xi^3 + 30240\xi$$

$$H_{10}(\xi) = \dots = 1024\xi^{10} - 23040\xi^8 + 161280\xi^6 - 403200\xi^4 + 302400\xi^2 - 30240$$