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1 Energy levels of a harmonic potential

The harmonic potential is given as
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The depending SCHRODINGER equation in one dimension is
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The derivatives are
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This finally leads to
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For large &2 we can ignore E* and get the asymptotic equation
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And since it is a second order differential equation, a possible solution is easy to see as

V(&) = Ae*% + Be%.

To not diverge however into o, we force B = 0, so the asymptotic solution to equation 4 is
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With variation of the constant we write Y (&) = H(E)e™ = and solve the equation for H(&).

The two derivatives of ¥ (&) are (using the product rule)
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Inserting it into equation 3 we get
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To solve the second order differential equation in H (&) we develop a power series:
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Inserting it into equation 3
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This only can be zero for all & if
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Written as a fraction
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This however diverges for n — o, so the power series must stop at a value n*, where all
following coefficients n > n* are zero. Thus

N*+1-E*=0 = E*=2n*+1 for n*=0,1,2,...

We now see that the energy is quantized!
Resubstituting E*
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E = (n* + %) hw = Epx.
The lowest possible energy we get for n* =0
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and see this lowest energy is non-zero.
The energy difference AE between two adjacent energy levels is
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Now what are the polynomials H(&)? These are the well-known as the HERMITE-polynoms.
Thus the Eigenfunctions are determined as
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where N, (respectively ag, a) is determined by normalization (to be read in some further
literature):
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thus
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The HERMITE-polynomes are generated with the following formula:
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Explicitly we get:
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