Chapitre 2 : Diagrammes potentiel–pH (ou diagrammes de Pourbaix)

I Principe

A) Domaine de prédominance acido-basique

Pour un couple AH / A^-, $K_a = \frac{[A^-]}{[AH]}$, donc $pH = pK_a + \log \left(\frac{[A^-]}{[AH]} \right)$

\[
\begin{array}{c|c|c}
AH & A^- & pH \\
\hline
& pK_a & \\
\end{array}
\]

B) Domaines de prédominance redox

Pour le couple Fe^{3+} / Fe^{2+}, $E = E^0 + 0.06 \log \left(\frac{[Fe^{3+}]}{[Fe^{2+}]} \right)$

A la limite quand $[Fe^{3+}] = [Fe^{2+}]$, $E = E^0$.

\[
\begin{array}{c|c|c}
E & Fe^{3+} & Fe^{2+} \\
\hline
E^0 & \\
\end{array}
\]

C) Domaine mixte

Pour le couple MnO_4^- / Mn^{2+} :

$MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$

Et $E = E^0 + \frac{0.06}{5} \log \left(\frac{[MnO_4^-]^{8}}{[Mn^{2+}]} \right)$

A la limite quand $[MnO_4^-] = [Mn^{2+}]$, $E = E^0 - \frac{0.06 \times 8}{5} pH$

\[
\begin{array}{c|c|c}
E & MnO_4^- & Mn^{2+} \\
\hline
& pH & \\
\end{array}
\]
II Conventions

A) Limite entre deux solutés

1) Problème

Pour le couple I_2 / I^-, on a la moitié équation $I_2 + 2e^- = 2I^-$

Donc $E = E^0 + 0,03 \log \frac{[I_2]}{[I^-]}$

À la limite quand $[I_2] = [I^-]$, $E = E^0 + 0,03 \log \frac{1}{[I^-]}$

Donc E limite dépend toujours de la concentration en ions iodure. On doit donc fixer des conventions.

2) Conventions

- Convention 1 :
 On fixe $[I_2] = [I^-] = c_0$ (souvent 1 ou 10^{-4} …

- Convention 2 :
 On fixe la concentration totale en élément iodé : $[I] = c_0$
 On a alors $[I] = [I^-] + 2[I_2] = c_0$
 Donc quand $[I^-] = [I_2]$, $[I^-] = c_0 / 3$

B) Limite entre un soluté et un solide

1) Problème

Pour la réaction $Fe(OH)_3 + e^- = Fe^{2+} + 3OH^-$

On a $E = E^0 + 0,06 \log \frac{1}{[Fe^{2+}][OH^-]}$ où $\omega = [OH^-]$

Que doit-on prendre comme limite ?

2) Convention

On prend $[Fe^{2+}] = c_0$

3) Interprétation
Hypothèse :
On suppose qu’il y a \(c_0 \text{mol.L}^{-1} \) de fer sous toutes ses formes \(\left(\frac{n_{Fe}}{V} = c_0 \right) \)

- Si \(E > E_{lim} \), \([\text{Fe}^{2+}] < c_0 \)
- Si \(E < E_{lim} \), \([\text{Fe}^{2+}] = c_0 \) (on ne peut pas avoir \([\text{Fe}^{2+}] > c_0 \)) ; on ne peut pas appliquer ici la formule de Nernst, puisqu’il n’y a plus de solide.

Le domaine au dessus de \(E_{lim} \) correspond donc au domaine d’existence de \(\text{Fe(OH)}_3 \).

C) Limite entre deux solides

\(\text{Fe(OH)}_3 + e^- = \text{Fe(OH)}_2 + \text{OH}^- \)

On a \(E = E^0 + 0,06 \log \frac{1}{\omega} = E^0 + 0,06 pK_e - 0,06 pH \)

\[E \]
\[\text{Fe(OH)}_3 \]
\[\text{Fe(OH)}_2 \]
\[E_{lim} \]
\[pH \]

On ne peut écrire la formule de Nernst que sur \(E_{lim} \), puisqu’il n’y a que là que les deux espèces coexistent.

D) Obtention de la limite

- Ecrire la ½ équation redox
- Ecrire la formule de Nernst
- Calculer \(E_{lim} \) avec la formule de Nernst et les conventions

IIII Diagramme du fer

A) Espèces étudiées (prises en compte)

<table>
<thead>
<tr>
<th>Espèces</th>
<th>Fe</th>
<th>Fe(^{2+})</th>
<th>Fe(^{3+})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fe(OH)(_2)</td>
<td>Fe(OH)(_3)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>+ II</td>
<td>+ III</td>
<td></td>
</tr>
</tbody>
</table>

Données :

- \(E_i^0 = -0,44V : \text{Fe}^{2+} / \text{Fe} \)
- \(E_i^0 = 0,77V : \text{Fe}^{3+} / \text{Fe}^{2+} \)
- \(\text{Fe(OH)}_3 : K_{s,1} = 10^{-38} \)
- \(\text{Fe(OH)}_2 : K_{s,2} = 10^{-15} \)

Convention : \(c_0 = 1 \)
B) Equilibres de précipitation

(Intérêt de commencer par là : indépendant de E car c’est le même degré d’oxydation)

1) Pour Fe(OH)_3.

Réaction : $\text{Fe(OH)}_3 = \text{Fe}^{3+} + 3\text{OH}^-$

A l’équilibre chimique, $[\text{Fe}^{3+}] = K_{s,1}$

Donc $[\text{Fe}^{3+}] \frac{K_s^3}{h^3} = K_{s,1}$

A la limite, $[\text{Fe}^{3+}] = c_0$

Donc $h^3 = \frac{K_s^3}{K_{s,1}}$, $pH = pK_s - \frac{1}{3} pK_{s,1} = 1,3$

\[\begin{array}{c|c|c}
\text{Fe}^{3+} & \text{Fe(OH)}_3 & pH \\
1,3 & & \\
\end{array}\]

2) Pour Fe(OH)_2.

On aura de la même manière $pH = pK_s - \frac{1}{2} K_{s,2} = 6,5$

\[\begin{array}{c|c|c}
\text{Fe}^{2+} & \text{Fe(OH)}_2 & pH \\
6,5 & & \\
\end{array}\]

C) Equilibre redox

1) Pour $pH < 1,3$.

On a les espèces $\text{Fe, Fe}^{2+}, \text{Fe}^{3+}$

- Pour le couple $\text{Fe}^{2+} / \text{Fe}$:
 $\text{Fe}^{2+} + 2e^- = \text{Fe}$
 $E = E_i^0 + 0,03 \log [\text{Fe}^{2+}]$. Donc $E_{\text{lim}} = E_i^0$

\[\begin{array}{c|c|c|c}
E & 1,3 & -0,44V & pH \\
\text{Fe}^{2+} & \text{Fe} & & \\
\end{array}\]

- Pour le couple $\text{Fe}^{3+} / \text{Fe}^{2+}$
 $\text{Fe}^{3+} + e^- = \text{Fe}^{2+}$
 $E = E_i^0 + 0,06 \log \frac{\text{Fe}^{3+}}{\text{Fe}^{2+}}$. Donc $E_{\text{lim}} = E_i^0$
2) Pour $1,3 < pH < 6,5$.

On a les espèces $\text{Fe, Fe}^{2+}, \text{Fe(OH)}_3$
- Pour Fe^{2+}/Fe, c’est toujours pareil.
- Pour $\text{Fe(OH)}_3/\text{Fe}^{2+}$:
 - Méthode 1 :
 \[\text{Fe(OH)}_3 + e^- = \text{Fe}^{2+} + 3\text{OH}^- \]
 Et $E = E_0^0 + 0,06 \log \frac{1}{[\text{Fe}^{2+}] [\text{OH}^3]$.

 Avec $[\text{Fe}^{2+}] = c_0$, $E_{\text{lim}} = E_0^0 + 0,06 \log \frac{h^3}{K_e}$
 Il faut calculer E_3^0 : on a $E_3^0 = E_2^0 - 0,06 \rho K_{s,1}$
 - Méthode 2 :
 \[E = E_2^0 + 0,06 \log \frac{[\text{Fe}^{3+}]}{[\text{Fe}^{2+}]} \] ([Fe^{3+}] est toujours présent en solution)
 A la limite, $[\text{Fe}^{2+}] = c_0$ et $[\text{Fe}^{3+}] [\rho^3] = K_{s,1}$
 Donc $[\text{Fe}^{3+}] = \frac{K_{s,1}}{\rho^3}$.

3) Pour $pH > 6,5$.

On a les espèces $\text{Fe, Fe(OH)}_2, \text{Fe(OH)}_3$ (majoritairement)
- Pour $\text{Fe(OH)}_2/\text{Fe}$:
 On a $E = E_1^0 + 0,03 \log [\text{Fe}^{2+}]$
 Et $[\text{Fe}^{2+}] = \frac{K_{s,2}}{\rho^2}$.
Pour Fe(OH)_3 / Fe(OH)_2 :

On a

\[E = E_0 + 0.06 \log \left(\frac{[Fe^{3+}]}{[Fe^{2+}]} \right) \]

et

\[[Fe^{3+}] = \frac{K_{3,2}}{\omega^2}, \quad [Fe^{3+}] = \frac{K_{4,1}}{\omega^2} \]

On a donc le diagramme final :

IV Propriétés des diagrammes \(E-pH \)

A) Limites

1) Limites verticales

Elles correspondent à la limite entre deux éléments de même degré d’oxydation :

\[Fe_2O_7^{2-} + H_2O = 2CrO_4^{2-} + 2H^+ \]

(ions dichromate, orange et chromate, jaune ; le degré d’oxydation de Cr est VI dans les deux cas)

2) Limites horizontales

Elles correspondent à des espèces ayant des nombres d’oxydation différents mais dont la réaction ne fait pas intervenir H^+ ou OH^-.

Exemple : \(Fe^{2+} + 2e^- = Fe \)

3) Limites obliques

Les degrés d’oxydation sont différents mais les ions H^+ interviennent dans l’équation :

\[Ox + mH^+ + ne^- = Red \quad (m \text{ peut être positif ou négatif}) \]

On a alors

\[E = E_0 + \frac{0.06}{n} \log \left(\frac{a_{Ox} h^m}{a_{Red} h^n} \right) = cte - 0.06 \frac{m}{n} \; pH \]

Remarque :

En général, les pentes sont descendantes (c'est-à-dire que \(m \) est positif)
4) Position de l’oxydant et du réducteur

L’oxydant est toujours situé au dessus, et le réducteur en dessous.

5) Jonction des limites

Si deux limites se rejoignent, alors une troisième va partir du point d’intersection
De plus, la pente de la troisième vérifie une relation barycentrique à coefficients positifs, c’est-à-dire sur le dessin qu’elle sera dans le domaine en pointillés :

6) Limites

La donnée d’une limite A/B est équivalente à la donnée d’une constante thermodynamique \((E^0, K_r, K_s)\)
(En connaissant bien sur la convention utilisée)

B) Domaines

- A une espèce correspond \textit{au plus} un domaine.
- Certaines espèces n’ont pas de domaine.

V Utilisation des diagrammes

A) Principe

\[
\text{Ox}_1 + \text{Red}_2 = \text{Red}_1 + \text{Ox}_2
\]

On trace le diagramme pour les deux couples :

Si \(pH > pH_1\), la réaction sera quantitative ; on ne peut pas avoir \(\text{Ox}_2\) et \(\text{Red}_1\) ensembles (quel que soit \(E\))
Si \(pH < pH_1\), c’est le contraire.

Chapitre 2 : Diagrammes potentiel–pH (ou diagrammes de Pourbaix)
Oxydoréduction
B) Exemples

![Diagramme de Pourbaix](image)

On prend comme convention que les concentrations sont égales à 1.

1) Oxydation du Fe(II) par le diiode

- On a un domaine où I₂ et Fe²⁺ coexistent, pour pH < 2,2
 On a donc principalement la réaction Fe(III) + 2I⁻ → I₂ + Fe(II)
 Ou, selon le pH :
 Si pH < 1,3, Fe³⁺ + I⁻ → 1/2 I₂ + Fe²⁺
 Si 1,3 < pH < 2,2, Fe(OH)₂ + I⁻ + 3H⁺ → 1/2 I₂ + Fe²⁺ + 3H₂O
- Pour pH > 2,2, on a une réaction quasi-totale :
 Fe(II) + I₂ → Fe(III) + I⁻
 Soit, pour 2,2 < pH < 6,5, Fe²⁺ + 1/2 I₂ → Fe(OH)₃ + I⁻ + 3H⁺
 Et pour pH > 6,5, Fe(OH)₂ + 1/2 I₂ + H₂O → Fe(OH)₃ + I⁻ + H⁺

2) Oxydation de Fe(0) par le diiode

- Pour 1 mole de diiode et 2 moles de fer (dans 1 litre)
 On a une oxydation totale à tout pH.
 De plus, le fer est en excès, donc il s’est oxydé, sous forme Fe²⁺ ou Fe(OH)₂ selon le pH.
- Pour 1 mole de fer et 2 moles de diiode (dans 1 litre)
 L’oxydation est toujours totale
 Mais si pH < 2,2, le fer est oxydé à l’état Fe²⁺
 Si pH > 2,2, il est oxydé à l’état Fe(III), donc il a été deux fois oxydé.

C) Déplacement d’une réaction par variation du pH.

1) Problème

La constante de réaction K^0 ne dépend que de la température.
Comment donc la réaction peut dépendre du pH de la solution ?
2) Exemple

Pour les couples IO_3^- / I_2 et I_2 / I^- (IO$_3^-$: ion iodate)

On a la réaction $\text{IO}_3^- + 5I^- + 6H^+ = 3I_2 + 3H_2O$

Et $K^0 = \frac{[I_2]^3}{[\text{IO}_3^-][I^-]} h^6 = 10^{54}$

Donc la réaction devrait « se faire bien »

Mais on raisonne en fait uniquement sur $[I_2], [\text{IO}_3^-], [I^-]$

$Q' = \frac{[I_2]^3}{[\text{IO}_3^-][I^-]} = K_0 h^6$, qui dépend du pH.

Si $pH = 0$, on a $Q' = 10^{54}$

Si $pH = 14$, $Q' = 10^{-30}$

VI Exemples de diagrammes

A) Diagramme de l’eau

1) H$_2$O oxydant

- Pour le couple H$_2$O / H$_2(g)$:
 - $H_2O + e^- = \frac{1}{2} H_2 + HO^-$
 - Formule de Nernst :
 $E = E_1^0 + 0,06 \log \frac{P_{H_2}}{P_0} ; E_1^0 :$ pour le couple $H_2O / H_2(g)$ à $pH = 14$

 $E = E_1^0 + 0,06 pK_e - 0,03 \log \frac{P_{H_2}}{P_0} - 0,06 pH$

On va voir dans le cas suivant que $E_1^0 = -0,06 pK_e$

Donc $E = -0,03 \log \frac{P_{H_2}}{P_0} - 0,06 pH$

- Limite : $P_{H_2} = P_0$

- Pour le couple $H_3O^+ / H_2(g)$:
 - $H_3O^+ + e^- = \frac{1}{2} H_2 + H_2O$
 - Formule de Nernst :
 $E = E_2^0 + 0,06 \log \frac{h}{\sqrt[2]{P_{H_2}}}$, et par définition $E_2^0 = 0$ donc $E_1^0 = -0,06 pK_e$

Chapitre 2 : Diagrammes potentiel–pH (ou diagrammes de Pourbaix)
Oxydoréduction
2) H₂O réducteur

Pour le couple O₂ / H₂O :
- ½ équation redox :
 \(\frac{1}{2} \text{O}_2 + 2\text{H}^+ + 2e^- = \text{H}_2\text{O} \)
- Formule de Nernst :
 \(E = E^0 + 0,03 \log \frac{P_{O_2}}{P^0} \)

Et \(E^0 = 1,23 \text{V} \).
- Limite :
 \(P_{O_2} = P^0 \)

On a alors \(E = 1,23 - 0,06 \text{pH} \) :

\[\begin{array}{c}
E \\
1,23 \\
\text{O}_2 \\
\text{H}_2\text{O} \\
pH
\end{array} \]

3) Analyse

\[\begin{array}{c}
E \\
1,23 \\
\text{O}_2 \\
\text{H}_2\text{O} \\
0 \\
\text{H}_2 \\
pH
\end{array} \]

- H₂O ne se dismute pas (!)
- H₂ et O₂ ne peuvent pas coexister.

A un couple \((E, \text{pH}) \) potentiel–\(\text{pH} \) correspond un point \(M \) sur le diagramme.
Si on ne fait rien, on aura \(M \in D(\text{H}_2\text{O}) \).
Lorsqu’on impose à l’électrode un potentiel :
- Si \(M \in D(\text{O}_2) \), on a la réaction \(\text{H}_2\text{O} \rightarrow \text{O}_2 \) qui se fait.
- Si \(M \in D(\text{H}_2) \), c’est la réaction \(\text{H}_2\text{O} \rightarrow \text{H}_2 \) qui se fait.

Remarque :
Pour le couple H₂O/H₂, c’est H qui change de degré d’oxydation, alors que pour le couple O₂/H₂O, c’est O.
B) Diagramme du cuivre (simplifié)

1) Préaliminaire

- Espèces :
 - Cu I
 - Cu_{2}O I
 - Cu^{2+} II

- Données :
 - Cu^{+} / Cu : \(E^{0} = 0.52 \text{V} \)
 - Cu^{2+} / Cu^{+} : \(E^{0} = 0.16 \text{V} \)
 - \(\text{Cu}_{2}\text{O} + \text{H}_{2}\text{O} = 2\text{Cu}^{+} + 2\text{HO}^{-} : K_{s_{1}} = 10^{-28} \)
 - \(\text{Cu(OH)}_{2} = \text{Cu}^{2+} + 2\text{HO}^{-} : K_{s_{2}} = 10^{-19} \)

- Convention :
 - On prend les concentrations égales à \(10^{-1}\text{mol.L}^{-1} \).

2) Limites de \(pH \).

- Pour \(\text{Cu}^{+} / \text{Cu}_{2}\text{O} \) :
 - On a à l’équilibre chimique \(\text{Cu}^{+} [\omega] = K_{s_{1}} \)
 - Donc avec la convention :
 \[
 \begin{array}{c|c|c}
 \text{Cu}^{+} & \text{Cu}_{2}\text{O} & \hat{pH} \\
 \hline
 1 & 1 & \end{array}
 \]

- Pour \(\text{Cu}^{2+} / \text{Cu(OH)}_{2} \) :
 - A l’équilibre, \(\text{Cu}^{2+} [\omega] = K_{s_{2}} \)
 \[
 \begin{array}{c|c|c}
 \text{Cu}^{2+} & \text{Cu(OH)}_{2} & \hat{pH} \\
 \hline
 5 & 5 & \end{array}
 \]

3) Limite entre le cuivre I et le cuivre 0

- Pour \(pH < 1 \) :
 - Le couple dominant est \(\text{Cu}^{+} / \text{Cu} \)
 - On a \(E = E_{i}^{0} + 0.06 \log[\text{Cu}^{+}] = 0.52 - 0.06 = 0.46 \text{V} \)

- Pour \(pH > 1 \) :
 - On a ici le couple \(\text{Cu}_{2}\text{O} / \text{Cu} \)
 - Il y a toujours des ions \(\text{Cu}^{+} \), donc on peut encore écrire la formule de Nerst :
 \[
 E = E_{i}^{0} + 0.06 \log[\text{Cu}^{+}] = \frac{\sqrt{K_{s_{1}}}}{\omega} = \frac{h}{K_{c}}
 \]
 - Donc \(E = 0.52 - 0.06 \text{pH} \)
4) Limite entre le cuivre II et le cuivre I

- Pour $pH < 1$:
 On prend le couple $\text{Cu}^{2+}/\text{Cu}^+$.
 On a la $\frac{1}{2}$ équation $\text{Cu}^{2+} + e^- = \text{Cu}^+$,
 Et à la limite, $E = E_2^0 + 0,06 \log \frac{[\text{Cu}^{2+}]}{[\text{Cu}^+]} = E_2^0 = 0,16V$

- Pour $1 < pH < 5$:
 On a le couple $\text{Cu}^{2+}/\text{Cu}_2\text{O}$
 Mais il y a toujours des ions Cu^+ en solution, donc on peut encore écrire
 \[E = E_2^0 + 0,06 \log \frac{[\text{Cu}^{2+}]}{[\text{Cu}^+]} \]
 Mais avec $[\text{Cu}^+] = \sqrt{\frac{K_{S_1}}{\omega}} = \sqrt{\frac{K_{S_1}}{K_v}}$
 Donc $E = 0,10 + 0,06 p\text{H}$

- Pour $pH > 5$, on a le couple $\text{Cu(OH)}_2/\text{Cu}_2\text{O}$
 Mais on peut toujours écrire la formule de Nernst pour les ions Cu^+ et Cu^{2+} :
 \[E = E_2^0 + 0,06 \log \frac{[\text{Cu}^{2+}]}{[\text{Cu}^+]} \]
 Avec ici $[\text{Cu}^+] = \sqrt{\frac{K_{S_1} \omega}{K_v}}$ et $[\text{Cu}^{2+}] = \frac{K_{S_2}}{\omega^2} = \frac{K_{S_2} \omega^2}{K_v}$
 Donc $E = 0,70 - 0,06 p\text{H}$
5) Dismutation de Cu⁺.

On a en superposant les deux diagrammes :

Les courbes se croisent à \(pH_0 = 3,5 \)
- Pour \(pH < 3,5 \) :
 - Le degré 1 n’est pas stable :
 1. Si \(pH < 1 \), on a la réaction quasi–totale \(2\text{Cu}^+ \rightarrow \text{Cu} + \text{Cu}^{2+} \)
 2. Si \(1 < pH < 3,5 \), on a \(\text{Cu}_2\text{O} + 2\text{H}^+ \rightarrow \text{Cu} + \text{Cu}^{2+} + 2\text{H}_2\text{O} \)
- Limite \(\text{Cu}^{2+} / \text{Cu} \) :
 \(\text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \)

On a \(E = E_3^0 + 0,03 \log[\text{Cu}^{2+}] \) avec \(E_3^0 = \frac{1}{2}(E_2^0 + E_1^0) = 0,34V \)

Donc à la limite \(E = 0,31V \)
On a ainsi le nouveau diagramme :

Chapitre 2 : Diagrammes potentiel–pH (ou diagrammes de Pourbaix)
Oxydoréduction