L'anguinéa (etudiée par Newton):
Considerons un cercle de diamètre a centré en (a/2,0) et
la droite Δ horizontale de distance h de (Ox)
coupant ce cercle. On prend le point courant P sur ce cercle, le
segment [OP] coupe Δ en N. Si l'on rapporte une
droite verticale en N et une droite horizontale en P,
l'intersection de ces dernières définit le point M. Quand
P parcours le cercle alors M décrit l'anguinéa qui
admet (Ox) comme asymptote.
%@AUTEUR: Maxime Chupin %@DATE: 11 mai 2007 verbatimtex %&latex \documentclass{article} \usepackage{amsmath} \usepackage[mdugm]{mathdesign} \begin{document} etex u:=2cm; a:=2u; h:=a/4; path ang; for i:=19 upto 350: beginfig(i-18); pickup pencircle scaled 0.6pt; drawarrow (0,-2u)--(0,2u); drawarrow (-3u,0)--(3u,0); path cercle,hori,rayon,verti,vertin,horip; pair O,A,P,N,M; O:=(0,0); cercle := fullcircle scaled (a) shifted (a/2,0); hori := 12[(-2*u,h),(2*u,h)]--12[(2*u,h),(-2*u,h)]; verti:= 12[(0,-2u),(0,2u)]--12[(0,2u),(0,-2u)]; pickup pencircle scaled 0.4pt; draw cercle dashed evenly withcolor blue; draw hori dashed evenly; if i<>180: P:=(a/2*cosd(i),a/2*sind(i)) shifted (a/2,0); rayon := 30[O,P]--30[P,O]; N = rayon intersectionpoint hori; vertin = verti shifted N; horip = hori shifted P; M = whatever [N,(xpart N,4u)]; M = whatever [P,(-4u,ypart P)]; if i<180: if ((xpart P)>(xpart N)): draw O--P withcolor green dashed evenly; else : draw O--N withcolor green dashed evenly; fi; else: draw P--N withcolor green dashed evenly; fi; if i=19: ang:=M; else: ang:= ang--M; fi; draw N--M withcolor green dashed evenly; draw P--M withcolor green dashed evenly; dotlabel.urt(btex $M$ etex, M); dotlabel.urt(btex $P$ etex, P); dotlabel.urt(btex $N$ etex, N); else: ang:= ang..(0,0); fi; pickup pencircle scaled 1pt; draw ang withcolor red; dotlabel.llft(btex $O$ etex, O); label.lft(btex $h$ etex, (0,h/2)); label.top(btex $a$ etex, (a/2,0)); label.top(btex $x$ etex, (2.7u,0)); label.llft(btex $y$ etex, (0,1.7u)); label(btex \itshape \underline{L'anguin\'ea} etex, (-1.8u,1.3u)); label(btex $y=\dfrac{ahx}{x^2+h^2}$ etex, (1.8u,-1.3u)); label.top(btex $\Delta$ etex, (2.7u,h)); clip currentpicture to (-3u,-2u)--(3u,-2u)--(3u,2u)--(-3u,2u)--cycle; endfig; endfor; end.