Soient deux points A(a,0) et B(0,b). On considère deux droites, une verticale passant par A, D, et l'autre horizontale passant par B, D'. On fait passer par O(0,0) un rayon vecteur qui coupe D en N. On construit alors le rectangle NPQM où P est sur D' et Q sur D. Le point M décrit alors une cubique unicursale de point double O appelée folium parabolique.
%@AUTEUR: Maxime Chupin %@DATE: 5 mai 2008 verbatimtex %&latex \documentclass{minimal} \usepackage[latin1]{inputenc} \usepackage[garamond]{mathdesign} \usepackage{amsmath} \begin{document} etex pair A,B,O; u:=0.8cm; A:=(3u,0); B:=(0,2u); O:=(0,0); path fol; for i:=-60 upto 65: beginfig(i+61); pair N,P,Q,M; path rayvec, vertiA, horiB,rayorth,drNP,drPM,raysym,rayorthsy,drQM; drawarrow (-10u,0)--(10u,0); drawarrow (0,-10u)--(0,10u); vertiA := 12[A,(xpart A, 3u)]--12[(xpart A, 3u),A]; horiB := 12[B,(5u,ypart B)]--12[(5u,ypart B),B]; rayvec :=(-40*u*cosd(i),-40*u*sind(i))--(40*u*cosd(i),40*u*sind(i)); N := rayvec intersectionpoint vertiA; rayorth := rayvec rotated (-90); drNP := rayorth shifted N; P := drNP intersectionpoint horiB; drPM := rayvec shifted P; Q := drPM intersectionpoint vertiA; drQM := rayorth shifted Q; M := drQM intersectionpoint rayvec; if i=-60: fol:=M; else: fol:=fol--M; fi; draw vertiA dashed evenly withcolor blue withpen pencircle scaled 0.8pt; draw horiB dashed evenly withcolor blue withpen pencircle scaled 0.8pt; draw rayvec dashed evenly withcolor green withpen pencircle scaled 0.8pt; draw N--P dashed evenly withcolor green withpen pencircle scaled 0.8pt; draw Q--P dashed evenly withcolor green withpen pencircle scaled 0.8pt; draw Q--M dashed evenly withcolor green withpen pencircle scaled 0.8pt; draw fol withcolor red withpen pencircle scaled 1pt; dotlabel.urt(btex $O$ etex,O); dotlabel.urt(btex $N$ etex,N); dotlabel.urt(btex $Q$ etex,Q); dotlabel.llft(btex $P$ etex,P); dotlabel.llft(btex $M$ etex,M); dotlabel.lrt(btex $A(a,0)$ etex,A); dotlabel.ulft(btex $B(0,b)$ etex,B); label.llft(btex $x$ etex,(10u,0)); label.lrt(btex $y$ etex , (0,10u)); label.llft(btex $\mathcal{D'}$ etex,(10u,ypart B)); label.lrt(btex $\mathcal{D}$ etex , (xpart A,10u)); label.top(btex \fbox{Folium parabolique} etex, (7u,7u)); label.top(btex $x^3=a(x^2-y^2)+bxy$ etex, (7u,6u)); clip currentpicture to (-10u,-10u)--(-10u,10u)--(10u,10u)--(10u,-10u)--cycle; endfig; endfor; end.