La courbe orthoptique — lieu des points à partir desquels une courbe est vue sous un angle droit — de l'ellipse est un cercle, le cercle de Monge; il a pour diamètre la diagonale du rectangle qui contient l'ellipse.
%@Auteur: Maxime Chupin verbatimtex %&latex \documentclass{article} \usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{fourier} \begin{document} etex input geometrie2d; u=3cm; v=3; path r; path carre; carre = (0,0)--(1,0)--(1,1)--(0,1)--cycle; for i=0 upto 72: beginfig(i+1); % excentricité : 0.65 numeric a,b,c,e,ya,xa,yb,xb,w,m,xm,ym; e := 0.65; a := 1.3u; b := a*sqrt(1-e**2); c := a*e; pair M,T,F,H,A,B,M'; path ellipse,tangente,monge,tang,arc,vraitang; ellipse = fullcircle xscaled 2a yscaled 2b; % axes pickup pencircle scaled 0.6pt; draw(-5u,0)--(5u,0); draw(0,-5u)--(0,5u); pickup pencircle scaled 1pt; draw ellipse withcolor green; drawarrow (0,0)--(0.6u,0); drawarrow (0,0)--(0,0.6u); pickup pencircle scaled 0.5pt; % directrice z3=(a/e,0); z4=(a/e,2u); draw 5[z3,z4]--5[z4,z3]; z6=(-a/e,0); z7=(-a/e,2u); draw 5[z6,z7]--5[z7,z6]; % M xm:=a*cosd(30+5*i); ym:=b*sind(30+5*i); M = (xm,ym); %tangente en M path tangente; if (xm<>0) and (ym<>0): ya=0; xa=a*a/xm; yb=b*b/ym; xb=0; fi; if (ym=0) and (xm<>0): ya=0; xa=(a*a)/xm; yb=2u; xb=(a*a)/xm; fi; if (xm=0) and (ym<>0): xa=0; ya=(b*b)/ym; xb=2u; yb=(b*b)/ym; fi; %définition de daux points de coordonnés xa,ya et xb,yb A = (xa,ya); B = (xb,yb); % cercle de monge monge := fullcircle scaled 2sqrt(a*a+b*b); pickup pencircle scaled 0.8pt; % tracé de la droite draw 10[A,B]--10[B,A] withcolor blue; tangente := 10[A,B]--10[B,A]; % point d'intersection arc := halfcircle scaled 2sqrt(a*a+b*b) rotated (15+5*i) ; T = arc intersectionpoint tangente; % tracé du cercle if i=0: r := T; else: r := r--T; draw r withcolor red; fi; % tangente en M' F=(0,0); if (xm<>0) and (ym<>0): w=1*u; m=(a*a)/(b*b)*ym/xm*u; fi; if (xm=0) and (ym<>0): w=0; m=2u; fi; if (ym=0) and (xm<>0): w=2u; m=0; fi; z2=(w,m); H=z2; tang = 5[F,H]--5[H,F]; vraitang := tang shifted T; draw tang shifted T withcolor blue; % z5= vraitang intersectionpoint ellipse; %carré pickup pencircle scaled 0.7pt; draw carre scaled 10 rotated (angle(T-M)+90) shifted T dashed evenly withcolor 0.2white; % labels % i,j label.bot(btex $\vec \imath$ etex, (0.3u,0)); label.lft(btex $\vec \jmath$ etex, (-0.01u,0.3u)); % points % label.lft(btex $M'$ etex, z5); dotlabel.urt(btex $T$ etex, T); dotlabel.urt(btex $M$ etex, M); dotlabel.urt(btex $O$ etex, (0,0)); % droites label.lft(btex $\delta$ etex,(0,-1.8u)); label.lft(btex $\cal D$ etex,(-2u,-1.8u)); label.rt(btex ${\cal D}'$ etex,(2u,-1.8u)); % titre label.urt(btex \begin{LARGE}\textit{Le cercle de Monge}\end{LARGE} etex, (-1.5*a,1.3*a)); label.urt(btex \begin{LARGE}$x^2+y^2=a^2+b^2$\end{LARGE} etex, (0.3*a,1.3*a)); clip currentpicture to (-2.5u,-2u)--(-2.5u,2u)--(2.5u,2u)--(2.5u,-2u)--cycle; endfig; endfor; end