input geometriesyr16; input outilssyr; vues:=5; figure(0,0,11u,8u); trace feuillet withcolor blanc; pair I,J,L; I=(1u,3u); J=(4u,6u); L=(7u,2u); drawarrow I--J; drawarrow I--L; label.lft(btex $I$ etex,I); label.top(btex $L$ etex,J); label.bot(btex $J$ etex,L); fin; for vue=0 upto vues: figure(0,0,11u,8u); trace feuillet withcolor blanc; drawarrow I--J; drawarrow I--L; label.lft(btex $I$ etex,I); label.top(btex $L$ etex,J); label.bot(btex $J$ etex,L); draw compas(I shifted ((vue/vues)*(J-I)),L shifted ((vue/vues)*(J-I)),1); fin; endfor; path cercless[]; cercless1=cercles(J,abs(L-I)); lJ=length cercless1+angle((L shifted(J-I) rotatedabout (J,-5))-J)*(length cercless1)/360; lL=length cercless1+angle((L shifted(J-I) rotatedabout (J,5))-J)*(length cercless1)/360; for vue=0 upto 2: figure(0,0,11u,8u); trace feuillet withcolor blanc; drawarrow I--J; drawarrow I--L; label.lft(btex $I$ etex,I); label.top(btex $L$ etex,J); label.bot(btex $J$ etex,L); draw compas(J,(L shifted (J-I)) rotatedabout(J,-5+(vue/2)*10),1); draw subpath(lJ,lJ+(vue/2)*(lL-lJ)) of cercless1 withcolor blue; fin; endfor for vue=0 upto vues: figure(0,0,11u,8u); trace feuillet withcolor blanc; drawarrow I--J; drawarrow I--L; label.lft(btex $I$ etex,I); label.top(btex $L$ etex,J); label.bot(btex $J$ etex,L); draw compas(I shifted ((vue/vues)*(L-I)),J shifted ((vue/vues)*(L-I)),1); draw subpath(lJ,lL) of cercless1 withcolor blue; fin; endfor cercless2=cercles(L,abs(J-I)); lp3=angle((J shifted(L-I) rotatedabout (L,-5))-L)*(length cercless2)/360; lp4=angle((J shifted(L-I) rotatedabout (L,5))-L)*(length cercless2)/360; for vue=0 upto 2: figure(0,0,11u,8u); trace feuillet withcolor blanc; drawarrow I--J; drawarrow I--L; label.lft(btex $I$ etex,I); label.top(btex $L$ etex,J); label.bot(btex $J$ etex,L); draw compas(L,(J shifted (L-I)) rotatedabout(L,-5+(vue/2)*10),1); draw subpath(lJ,lL) of cercless1 withcolor blue; draw subpath(lp3,lp3+(vue/2)*(lp4-lp3)) of cercless2 withcolor blue; fin; endfor pair K; K=cercless2 intersectionpoint cercless1; figure(0,0,11u,8u); trace feuillet withcolor blanc; drawarrow I--J; drawarrow I--L; label.lft(btex $I$ etex,I); label.top(btex $L$ etex,J); label.bot(btex $J$ etex,L); draw subpath(lJ,lL) of cercless1 withcolor blue; draw subpath(lp3,lp4) of cercless2 withcolor blue; draw J--K--L dashed evenly; label.rt(btex $K$ etex,K); fin; for vue=0 upto vues: figure(0,0,11u,8u); draw regle(I,K,1); draw crayon(I,K,(vue/vues),1.5); trace feuillet withcolor blanc; drawarrow I--J; drawarrow I--L; label.lft(btex $I$ etex,I); label.top(btex $L$ etex,J); label.bot(btex $J$ etex,L); draw subpath(lJ,lL) of cercless1 withcolor blue; draw subpath(lp3,lp4) of cercless2 withcolor blue; draw J--K--L dashed evenly; label.rt(btex $K$ etex,K); draw I--(I+(vue/vues)*(K-I)) withpen pencircle scaled 1.5bp withcolor red; fin; endfor figure(0,0,11u,8u); trace feuillet withcolor blanc; drawarrow I--J; drawarrow I--L; label.lft(btex $I$ etex,I); label.top(btex $L$ etex,J); label.bot(btex $J$ etex,L); draw subpath(lJ,lL) of cercless1 withcolor blue; draw subpath(lp3,lp4) of cercless2 withcolor blue; draw J--K--L dashed evenly; label.rt(btex $K$ etex,K); drawarrow I--K withpen pencircle scaled 1.5bp withcolor red; trace appelation(I,K,2mm,btex $\overrightarrow{\strut IJ}+\overrightarrow{\strut IL}$ etex); fin; figure(0,0,11u,8u); trace feuillet withcolor blanc; drawarrow I--J; drawarrow I--L; label.lft(btex $I$ etex,I); label.top(btex $L$ etex,J); label.bot(btex $J$ etex,L); draw subpath(lJ,lL) of cercless1 withcolor blue; draw subpath(lp3,lp4) of cercless2 withcolor blue; draw J--K--L dashed evenly; label.rt(btex $K$ etex,K); drawarrow I--K withpen pencircle scaled 1.5bp withcolor red; trace appelation(I,K,2mm,btex $\overrightarrow{\strut IJ}+\overrightarrow{\strut IL}$ etex); fin; figure(0,0,11u,8u); trace feuillet withcolor blanc; drawarrow I--J; drawarrow I--L; label.lft(btex $I$ etex,I); label.top(btex $L$ etex,J); label.bot(btex $J$ etex,L); draw subpath(lJ,lL) of cercless1 withcolor blue; draw subpath(lp3,lp4) of cercless2 withcolor blue; draw J--K--L dashed evenly; label.rt(btex $K$ etex,K); drawarrow I--K withpen pencircle scaled 1.5bp withcolor red; trace appelation(I,K,2mm,btex $\overrightarrow{\strut IJ}+\overrightarrow{\strut IL}$ etex); fin; end %On souhaite construire graphiquement la somme $\vecteur{IJ}+\vecteur{IL}$. %Si on choisit le point $I$ pour origine de ce vecteur somme, on doit alors construire le point $K$ tel que $IJKL$ soit un parallélogramme. %Le vecteur somme $\vecteur{IJ}+\vecteur{IL}$ est le vecteur $\vecteur{IK}$.