%@AUTEUR: David Nivaud verbatimtex %&latex \documentclass[12pt]{article} \def\vect#1{\overrightarrow{#1}} \def\Vect#1{\overrightarrow{\strut #1}} \everymath{\displaystyle} \begin{document} etex beginfig(1); %repere cartesien dans l'espace numeric u; pair t,s,q; u = 1cm; %definitions de l'origine et des vecteurs de base t=(2u,0u); s=(0u,2u); q=(-1u,-1.5u); z0 = (0,0); z1= z0 shifted t; z2 = z0 shifted s; z3 = z0 shifted q; %trace de l'origine et des vecteurs de base dotlabel.lft(btex $O$ etex, z0); label.bot(btex $\vect{\jmath}$ etex, z1); label.lft(btex $\vect{\imath}$ etex, z3); label.lft(btex $\vect{k}$ etex, z2); %trace des axes drawarrow z0--z1 ; drawarrow z0--z2 ; drawarrow z0--z3 ; endfig; beginfig(2); % coordonnées d'un point dans un repere de l'espace numeric u; pair t,s,q; u = 1cm; %definitions de l'origine et des vecteurs de base t=(1u,0u); s=(0u,1u); q=(-0.5u,-0.5u); z0 = (0,0); z1= z0 shifted t; z2 = z0 shifted s; z3 = z0 shifted q; %trace de l'origine et des vecteurs de base dotlabel.lft(btex $O$ etex, z0); label.bot(btex $\vect{\jmath}$ etex, z1); label.lft(btex $\vect{\imath}$ etex, z3); label.lft(btex $\vect{k}$ etex, z2); %trace des axes drawarrow z0--z1 ; drawarrow z0--z2 ; drawarrow z0--z3 ; %construction du point M z4 = z0 shifted 4t; z5 = z0 shifted 4s; z6 = z0 shifted 4q; drawarrow z0--z4 ; drawarrow z0--z5 ; drawarrow z0--z6 ; z7= 3.5t+2.5q; label.bot(btex $M'$ etex, z7); z8 = 3.5t ; z9 = 2.5q ; draw z7--z8 dashed evenly; draw z7--z9 dashed evenly; label.top(btex $y$ etex, z8); label.lft(btex $x$ etex, z9); z10 = z7 shifted 3s; draw z7--z10 dashed evenly; label.rt(btex $M$ etex, z10); z11 = z10 shifted z0-z7; draw z11--z10 dashed evenly; label.lft(btex $z$ etex, z11); drawarrow z0--z10; drawarrow z0--z7; endfig; beginfig(3); %illustration du calcul de distance dans un repere orthonormal numeric u; pair t,s,q; u = 1cm; %definitions de l'origine et des vecteurs de base t=(1u,0u); s=(0u,1u); q=(-0.5u,-0.5u); %construction de l'origine et des vecteurs de base z0 = (0,0); z1= z0 shifted t; z2 = z0 shifted s; z3 = z0 shifted q; dotlabel.lft(btex $O$ etex, z0); label.bot(btex $\vect{\jmath}$ etex, z1); label.lft(btex $\vect{\imath}$ etex, z3); label.lft(btex $\vect{k}$ etex, z2); %trace des axes drawarrow z0--z1 ; drawarrow z0--z2 ; drawarrow z0--z3 ; %construction du point M et de ses projetes z4 = z0 shifted 4t; z5 = z0 shifted 4s; z6 = z0 shifted 4q; drawarrow z0--z4 ; drawarrow z0--z5 ; drawarrow z0--z6 ; z7= 3.5t+2.5q; label.bot(btex $m$ etex, z7); z8 = 3.5t ; z9 = 2.5q ; draw z7--z8 dashed evenly; draw z7--z9 dashed evenly; label.top(btex $b$ etex, z8); label.lft(btex $a$ etex, z9); z10 = z7 shifted 3s; draw z7--z10 dashed evenly; label.rt(btex $M$ etex, z10); z11 = z10 shifted z0-z7; draw z11--z10 dashed evenly; label.lft(btex $c$ etex, z11); drawarrow z0--z10; drawarrow z0--z7; endfig; end