\section {Courbes de fonctions de $R$ vers $R^3$} %% \section{Fonctions R --> R\textsuperscript{3}} Le tracé de la fonction ainsi définie fait appel à l'objet \Cadre{courbe} et à l'option \Cadre{function}. On pourra réaliser le tracé de l'hélice, en notation algébrique avec la fonction : %%\begin{boxedverbatim} \begin{verbatim} \defFunction[algebraic]{helice}(t){3*cos(4*t)}{3*sin(4*t)}{t} \end{verbatim} %%\end{boxedverbatim} \begin{LTXexample}[width=6.5cm] \psset{unit=0.5} \psset{lightsrc=10 -20 50,viewpoint=50 -20 20 rtp2xyz,Decran=50} \begin{pspicture}(-6,-3)(6,8) \psframe*[linecolor=blue!50](-6,-3)(6,8) \psSolid[object=grille,base=-4 4 -4 4,linecolor=red,linewidth=0.5\pslinewidth]% \axesIIID(0,0,0)(4,4,7) \defFunction[algebraic]{helice}(t){3*cos(4*t)}{3*sin(4*t)}{t} \psSolid[object=courbe, r=0, range=0 6, linecolor=blue,linewidth=0.1, resolution=360, function=helice]% \end{pspicture} \end{LTXexample} \begin{LTXexample}[width=6.5cm] \psset{unit=0.5} \begin{pspicture}(-6,-3)(6,8) \psframe*[linecolor=blue!50](-6,-3)(6,8) \psset{lightsrc=10 -20 50,viewpoint=50 -20 30 rtp2xyz,Decran=50} \defFunction{CosRad}(t){t 2 mul Cos 4 mul}{t}{0} \psSolid[object=grille,base=-4 4 -4 4,linecolor=red,linewidth=0.5\pslinewidth]% \axesIIID(0,0,0)(4,4,7) \psset{range=-4 4} \psSolid[object=courbe,linewidth=0.1, r=0,linecolor=red, resolution=360, function=CosRad] \psSolid[object=grille,base=-4 4 -4 4,linecolor=blue,linewidth=0.5\pslinewidth](0,0,3) \psPoint(0,0,3){O1}\psPoint(0,0,7){Z1}\psline(O1)(Z1)\psline[linestyle=dashed](O1)(O) \pstVerb{/tmin -4 def /tmax 4 def}% \defFunction{sinRad}(t){t}{t Sin 3 mul}{3} \psSolid[object=courbe,linewidth=0.1, r=0,linecolor=blue, resolution=30, function=sinRad] \end{pspicture} \end{LTXexample} \begin{LTXexample}[width=6.5cm] \psset{unit=0.5} \begin{pspicture}(-6.5,-3)(7,11) \psset{lightsrc=10 -20 50,viewpoint=50 -20 20 rtp2xyz,Decran=50} \psSolid[object=grille,base=-4 4 -4 4, linecolor=lightgray,linewidth=0.5\pslinewidth]% \psSolid[object=grille,base=-4 4 0 8, linecolor=lightgray,RotX=90, linewidth=0.5\pslinewidth](0,4,0) \psSolid[object=grille,base=-4 4 -4 4, linecolor=lightgray,RotY=90, linewidth=0.5\pslinewidth](-4,0,4) \defFunction[algebraic]{helice}(t)% {1.3*(1-cos(2.5*t))*cos(6*t)} {1.3*(1-cos(2.5*t))*sin(6*t)}{t} \defFunction[algebraic]{helice_xy}(t)% {1.3*(1-cos(2.5*t))*cos(6*t)} {1.3*(1-cos(2.5*t))*sin(6*t)}{0} \defFunction[algebraic]{helice_xz}% (t){1.3*(1-cos(2.5*t))*cos(6*t)}{4}{t} \defFunction[algebraic]{helice_yz}% (t){-4}{1.3*(1-cos(2.5*t))*sin(6*t)}{t} \psset{range=0 8} \psSolid[object=courbe,r=0,linecolor=blue, linewidth=0.05,resolution=360, normal=0 0 1,function=helice_xy] \psSolid[object=courbe,r=0, linecolor=green,linewidth=0.05, resolution=360,normal=0 0 1, function=helice_xz] \psSolid[object=courbe,r=0, linewidth=0.05,resolution=360, normal=0 0 1,function=helice_yz] \psSolid[object=courbe,r=0, linecolor=red,linewidth=0.1, resolution=360,function=helice] \end{pspicture} \end{LTXexample} Ces dernières courbes se trouvent sous forme d'animations sur la page : \centerline{\url{http://melusine.eu.org/syracuse/pstricks/pst-solides3d/animations/}}