Retour

par-keywords.tex

Télécharger le fichier
\section{Index}
 
%%% some convenient definitions
\def\|{\discretionary{|}{}{|}}%%%
\def\_{\discretionary{}{}{}}%%%
\def\[{{\upshape [}}%%%
\def\]{{\upshape ]}}%%%
\def\({{\upshape (}}%%%
\def\){{\upshape )}}%%%
\def\kwd#1{\texttt{\upshape #1}}%%%
\def\~{\discretionary{\kwd|}{}{\kwd|}}%%%
\let\mc\multicolumn%%%
\def\£{\hphantom{def}}
 
\begin{tabular}{|p{3.5cm}|p{5.8cm}|}
 \hline
 \multicolumn2{|c|}{\textbf{Glossary of symbols}}\\[.2em]
 \hline
  \multicolumn{1}{|l|}{\textbf{Symbol}}&
  \multicolumn{1}{l|}{\textbf{Use/meaning}} \\ \hline
 \kwd{object}, \kwd{sommets}, ...& keywords\\
 $A$, $B$, $C$, $I$, $P$ & names of points\\
 $x$ $y$ & coordinates of a point in a plane\\
 $x$ $y$ $z$ & coordinates of a 3d point\\
 $r$ $\theta$ $\phi$ & spherical coordinates of a 3d point\\
 $L$, $M$ & names of lines\\
 $C$, $r$ & circle, centre name $C$, radius $r$\\
 $a$ $b$ $c$ & components of a normal\\
 \[$a$ $b$ $c$ $d$\]&the plane $ax+by+cz+d=0$\\
 $a$, $b$ & intercepts of lines\\
 $u$, $v$ & names of vectors\\
 $\alpha$ & angle/angle of rotation\\
 $k$ & scaling factor\\
 $S$ & name of a solid\\
 $i$ & index number of a vertex/face\\
 $w$ & linewidth\\
 \textit{num} & integer\\
 \textit{value} & real number\\
 \textit{length} & positive real number\\
 \textit{string} & text string\\
 $a$\~$b$\~$c$\~... & alternatives\\
 \hline
\end{tabular}
 
 
\begin{longtable}{|>{\bfseries\ttfamily\color{blue}}p{2.4cm}@{}
 |>{\ttfamily}p{4.5cm}@{}|>{\itshape}p{7.5cm}@{}|>{\ttfamily}p{1.7cm}@{}|}
  \hline
  \multicolumn{1}{|l|}{\textbf{Name}}&
  \multicolumn{1}{l|}{\textbf{Command/Object}}&
  \multicolumn{1}{l|}{\textbf{Value}}&
  \multicolumn{1}{l|}{\textbf{Default}} \\ \hline\hline
\endfirsthead
\hline
  \multicolumn{1}{|l|}{\textbf{Name}}&
  \multicolumn{1}{l|}{\textbf{Command/Object}}&
  \multicolumn{1}{l|}{\textbf{Value}}&
  \multicolumn{1}{l|}{\textbf{Default}} \\ \hline\hline
\endhead
\multicolumn{4}{|r|}{\textit{Continued on next page}}\\ \hline
\endfoot
\hline \multicolumn{4}{|r|}{\textit{End of table}}\\ \hline
\endlastfoot
 
a&
 \textbackslash{}psSolid&&\\[.5em]
 &object=cube\|tetrahedron\|octahedron\|%
 dodecahedron\|icosahedron&length&2\\
 \hline
 
a, b and c&
 \textbackslash{}psSolid&&\\[.5em]
 &object=\_parallelepiped&length&4\\
 \hline
 
action&
 \textbackslash{}psSolid&\upshape\ttfamily
 none\|draw\|draw*\|draw**\|writeobj\|writeoff\|writesolid&\texttt{draw**}\\
 \hline
 
affinage&
 \textbackslash{}psSolid&
 \kwd{all}\~ $i_0$ $i_1$ ... $i_n$&\\
 \hline
 
affinage\-coeff&
 \textbackslash{}psSolid&value&0.8\\
 \hline
 
affinagerm&
 \textbackslash{}psSolid&
 boolean&true\\
 \hline
 
algebraic&
 \textbackslash{}psFunction, \textbackslash{}psSurface&
 boolean&false\\
 \hline
 
args&
 \textbackslash{}psSolid&&\\[.5em]
 
 &object=plan&&\\
 &definition&&\\
 &\£=equation&\{\[a b c d \]\}\~%
  \{\[a b c d \] $\alpha$\}&\\
 &\£=normalpoint&\{$x_0$ $y_0$ $z_0$ \[a b c\]\}\~&\\
 &&\{$x_0$ $y_0$ $z_0$ \[a b c $\alpha$\]\}\~&\\
 &&\{$x_0$ $y_0$ $z_0$ \[$u_x$ $u_y$ $u_z$ a b c\]\}\~&\\
 &&\{$x_0$ $y_0$ $z_0$ \[$u_x$ $u_y$ $u_z$ a b c $\alpha$\]\}&\\
 &\£=solidface&$S$ $i$&\\[.5em]
 
 &object=point&$x$ $y$ $z$ \~ $P$&\\
 &definition&&\\
 &\£=addv3d&$x_1$ $y_1$ $z_1$ $x_2$ $y_2$ $z_2$ \~ u v&\\
 &\£=barycentre3d&\{\[$A$ $i_A$ $B$ $i_B$\]\}&\\
 &\£=hompoint3d&$P$ $A$ $k$&\\
 &\£=isobarycentre3d&\{\[$A_0$ $A_1$ ... $A_n$\]\}&\\
 &\£=milieu3d&$A$ $B$&\\
 &\£=mulv3d&$x$ $y$ $z$ $k$ \~ $u$ $k$&\\
 &\£=normalize3d&$x$ $y$ $z$ \~ $u$&\\
 &\£=orthoprojplane3d&$P$ $A$ $v$&\\
 &\£=rotateOpoint3d&$P$ $\alpha_x$ $\alpha_y$ $\alpha_z$&\\
 &\£=scaleOpoint3d&$x$ $y$ $z$ $k_x$ $k_y$ $k_z$ \~ name $k_x$ $k_y$ $k_z$&\\
 &\£=solidcentreface&$S$ $i$&\\
 &\£=solidgetsommet&$S$ $i$&\\
 &\£=subv3d&$x_1$ $y_1$ $z_1$ $x_2$ $y_2$ $z_2$ \~ $u$ $v$&\\
 &\£=sympoint3d&$P$ $A$&\\
 &\£=translatepoint3d&$P$ $v$&\\
 &\£=vectprod3d&$x_1$ $y_1$ $z_1$ $x_2$ $y_2$ $z_2$ \~ $u$ $v$&\\[.5em]
 
 &object=vecteur&$x$ $y$ $z$ \~&\\
 &&$x_1$ $y_1$ $z_1$ $x_2$ $y_2$ $z_2$ \kwd{addv3d} \~&\\
 &&$x_1$ $y_1$ $z_1$ $x_2$ $y_2$ $z_2$ \kwd{subv3d} \~&\\
 &&$x$ $y$ $z$ $k$ \kwd{mulv3d} \~&\\
 &&$x$ $y$ $z$ \kwd{normalize3d} \~&\\
 &&$x_1$ $y_1$ $z_1$ $x_2$ $y_2$ $z_2$ \kwd{vectprod3d} &\\[.5em]
 
 &object=vecteur3d&$x_A$ $y_A$ $z_A$ $x_B$ $y_B$ $z_B$ \~ $A$ $B$&\\[.6em]
 
args&
 \textbackslash{}psProjection&&\\[.5em]
 
 &object=cercle&$x$ $y$ $r$ \~ $C$ $r$&\\
 &definition&&\\
 &\£=ABcercle&$A$ $B$ $C$&\\
 &\£=diamcercle&$A$ $B$&\\[.5em]
 
 &object=droite&$x_1$ $y_1$ $x_2$ $y_2$ \~ $A$ $B$&\\
 &definition&&\\
 &\£=axesymdroite&$L$ $M$&\\
 &\£=bissectrice&$A$ $B$ $C$&\\
 &\£=horizontale&$b$&\\
 &\£=mediatrice&$A$ $B$&\\
 &\£=paral&$L$ $A$&\\
 &\£=perp&$L$ $A$&\\
 &\£=rotatedroite&$L$ $A$ $\alpha$&\\
 &\£=translatedroite&$L$ $u$&\\
 &\£=verticale&$a$&\\[.5em]
 
 &object=line&$A_0$ $A_1$ ... $A_n$&\\[.5em]
 
 &object=point&&\\
 &definition&&\\
 &\£=axesympoint&$P$ $L$&\\
 &\£=cpoint&$\alpha$ $C$ $r$&\\
 &\£=hompoint&$P$ $A$ $k$&\\
 &\£=interdroite&$L$ $M$&\\
 &\£=interdroitecercle&$L$ $C$ $r$&\\
 &\£=milieu&$A$ $B$&\\
 &\£=orthoproj&$P$ $L$&\\
 &\£=parallelopoint&$A$ $B$ $C$&\\
 &\£=projx&$P$&\\
 &\£=projy&$P$&\\
 &\£=rotatepoint&$P$ $I$ $\alpha$&\\
 &\£=sympoint&$P$ $I$&\\
 &\£=translatepoint&$P$ $u$&\\
 &\£=xdpoint&$x$ $L$&\\
 &\£=ydpoint&$y$ $L$&\\[.5em]
 
 &object=polygone&$A_0$ $A_1$ ... $A_n$&\\
 &definition&&\\
 &\£=axesympol&pol $L$&\\
 &\£=hompol&pol $I$ $\alpha$&\\
 &\£=rotatepol&pol $I$ $\alpha$&\\
 &\£=sympol&pol $I$&\\
 &\£=translatepol&pol $u$&\\[.5em]
 
 &object=rightangle&$A$ $B$ $C$&\\[.5em]
 
 &object=vecteur&&\\
 &definition&&\\
 &\£=addv&$A$ $B$&\\
 &\£=mulv&$u$ $k$&\\
 &\£=normalize&$u$&\\
 &\£=orthovecteur&$u$&\\
 &\£=subv&$u$ $v$&\\
 &\£=vecteur&$A$ $B$&\\
 \hline
 
axe&
 \textbackslash{}psSolid&&\\[.5em]
 &object=\_cylindre\|prisme\|ruban&$x$ $y$ $z$&0 0 1\\
 \hline
 
axesboxed&
 \textbackslash{}psSolid&boolean&false\\
 \hline
 
axisemph&
 \textbackslash{}axesIIID&\{text style\}&\\
 \hline
 
axisnames&
 \textbackslash{}axesIIID&\{a,b,c\}&\{x,y,z\}\\
 \hline
 
base&
 \textbackslash{}psSolid&&\\[.5em]
 &object=face\|prisme\|ruban&$x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ ...
  $x_n$ $y_n$&\begin{tabular}[t]{rr} -1 & -1\\ 1 & -1\\ 0 & 1\end{tabular}\\
 &object=fusion&$S_1$ $S_2$&\\
 &object=grille&$x_{\textrm{\upshape\scriptsize min}}$
 $x_{\textrm{\upshape\scriptsize max}}$
 $y_{\textrm{\upshape\scriptsize min}}$ $y_{\textrm{\upshape\scriptsize max}}$&\\
 \hline
 
biface&
 \textbackslash{}psSolid&&\\[.5em]
 &object=face&boolean&true\\
 \hline
 
chanfrein&
 \textbackslash{}psSolid&boolean&false\\
 \hline
 
chanfrein\-coeff&
 \textbackslash{}psSolid&value&0.2\\
 \hline
 
deactiv\-atecolor&
 \textbackslash{}psSolid&boolean&false\\
 \hline
 
decal&
 \textbackslash{}psSolid&num&-2\\
 \hline
 
definition&
 \textbackslash{}psSolid&&\\[.5em]
 &object=plan&
 \upshape\ttfamily
 equation\|normalpoint\|solidface&\\[.5em]
 &object=point&
 \upshape\ttfamily
 addv3d\|barycentre3d\|hompoint3d\|isobarycentre3d\|milieu3d\|%
 orthoprojplane3d\|rotateOpoint3d\|scaleOpoint3d\|solidcentreface\|%
 solidgetsommets&\\
 &&&\\[-.6em]
 &object=vecteur&
 \upshape\ttfamily
 vecteur3d\|addv3d\|subv3d\|mulv3d\|normalize3d\|vectprod3d&{}\\
 &&&\\[-.6em]
definition&
 \textbackslash{}psProjection&&\\[.5em]
 &object=cercle&
 \upshape\ttfamily
 ABcercle\|diamcercle&\\
 &&&\\[-.6em]
 &object=droite&
 \upshape\ttfamily
 axesymdroite\|bissectrice\|horizontale\|mediatrice\|%
 paral\|perp\|rotatedroite\|translatedroite\|%
 verticale&\\
% &&&\\[-.6em]
 &object=point&
 \upshape\ttfamily
 axesympoint\|cpoint\|hompoint\|interdroite\|interdroitecercle\|%
 milieu\|orthoproj\|parellelopoint\|projx\|projy\|rotatepoint\|%
 sympoint\|translatepoint\|xdpoint\|ydpoint&\\
% &&&\\[-.6em]
 &object=polygone&
 \upshape\ttfamily
 axesympol\|hompol\|rotatepol\|sympol\|%
 translatepol&\\
% &&&\\[-.6em]
 &object=vecteur&
 \upshape\ttfamily
 addv\|normalize\|mulv\|orthovecteur\|subv\|vecteur&\\
\hline
 
dualreg&
 \textbackslash{}psSolid&&\\[.5em]
 &object=geode&boolean&false\\
 \hline
 
faces&
 \textbackslash{}psSolid&&\\[.5em]
 &object=new&\{\[$i_1$ $i_2$ ... $i_n$ \]\[$i_1'$ $i_2'$ ... $i_m'$ \] ... \}&\\
 \hline
 
fcol&
 \textbackslash{}psSolid& $i_0$ \($color_0$\) $i_1$ \($color_1$\) ...&\\
 \hline
 
fcolor&
 \textbackslash{}psSolid&&\\[.5em]
 &affinagerm& color &\\
 \hline
 
file&
 \textbackslash{}psSolid&&\\[.5em]
 &action=writesolid&filename&\\[.5em]
 &object=datfile\|objfile\|offfile&filename&\\
 \hline
 
fillcolor&
 \textbackslash{}psSolid, \textbackslash{}psSurface&color&white\\
 \hline
 
function&
 \textbackslash{}psSolid, \textbackslash{}defFunction&&\\[.5em]
 &object=cone\|courbe\|courbeR2\|cylindre\|surfaceparametree&name&\\
 \hline
 
grid&
 \textbackslash{}psSolid&boolean&true\\
 \hline
 
h&
 \textbackslash{}psSolid&&\\[.5em]
 &object=cone\|cylindre\|prisme\|tronccone&length&6\\
 \hline
 
hollow&
 \textbackslash{}psSolid&&\\[.5em]
 &object=cone\|cylindre\|prisme\|tronccone&boolean&false\\
 \hline
 
hue,&
 \textbackslash{}psSolid, \textbackslash{}psSurface&$h_0$ $h_1$&\\
inhue, &&$h_0$ $h_1$ $s$ $b$&\\
inouthue &&$h_0$ $s_0$ $b_0$ $h_1$ $s_1$ $b_1$ \kwd{(hsb)}&\\
 &&$r_0$ $g_0$ $b_0$ $r_1$ $g_1$ $b_1$&\\
 &&$c_0$ $m_0$ $y_0$ $k_0$ $c_1$ $m_1$ $y_1$ $k_1$&\\
 &&\(color$_1$\) \(color$_2$\)&\\
 \hline
 
incolor&
 \textbackslash{}psSolid, \textbackslash{}psSurface&color&green\\
 \hline
 
 
intersec\-tioncolor&
 \textbackslash{}psSolid&\(color$_1$\) ... \(color$_n$\)&(rouge)\\
 \hline
 
intersec\-tionline\-width&
 \textbackslash{}psSolid&$w_1$ ... $w_n$&1\\
 \hline
 
intersec\-tionplan&
 \textbackslash{}psSolid, \textbackslash{}psSurface&name \~ \{eq$_1$ ... eq$_n$\}
 \textrm{\upshape where eq$_i$=}\[$a_i$ $b_i$ $c_i$ $d_i$\]&\\
 \hline
 
labelsep&
 \textbackslash{}axesIIID&length[unit]&\\
 \hline
 
 
light\-intensity&
 \textbackslash{}psSolid, \textbackslash{}psSurface&value&2\\
 \hline
 
lightsrc&
 \textbackslash{}psSolid, \textbackslash{}psSurface&$x$ $y$ $z$&20 30 50\\
 \hline
 
load&
 \textbackslash{}psSolid&&\\[.5em]
 &object=load&name&\\
 \hline
 
mathLabel&
 \textbackslash{}axesIIID&boolean&true\\
 \hline
 
mode&
 \textbackslash{}psSolid&
 \upshape\ttfamily
 0\|1\|2\|3\|4&0\\
 \hline
 
name&
 \textbackslash{}psSolid, \textbackslash{}psProjection&name&\\
 \hline
 
ngrid&
 \textbackslash{}psSolid&&\\[.5em]
 &object=cube\|prisme\|prismecreux&$n_1$&\\
 &&&\\[-0.6em]
 &object=cone\|conecreux\|cylindre\|cylindrecreux\|%
 tore\|tronccone\|troncconecreux&$n_1$ $n_2$&\\
 &&&\\[-0.6em]
 &object=grille\|surface\|surface*\|surfaceparametree&$n_1$\~ $n_1$ $n_2$&\\
 \hline
 
num&
 \textbackslash{}psSolid&\kwd{all} \~ $i_0$ $i_1$ ... $i_n$&\\
 \hline
 
object&
 \textbackslash{}psSolid&
 \upshape\ttfamily
 new\|anneau\|calottesphere\|cone\|conecreux\|cube\|%
 cylindre\|cylindrecreux\|datfile\|dodecahedron\|face\|%
 fusion\|geode\|grille\|icosahedron\|load\|octahedron\|%
 objfile\|parallelepiped\|plan\|prisme\|ruban\|%
 sphere\|surfaceparametree\|tetrahedron\|%
 tore\|tronccone\|troncconecreux&\\
 &&&\\[-0.6em]
object&
 \textbackslash{}psProjection&
 \upshape\ttfamily
 cercle\|courbe\|courbeR2\|droite\|line\|point\|polygone\|%
 rightangle\|texte\|vecteur&\\
 \hline
 
 
opacity&
 \textbackslash{}psSolid&value&1\\
 \hline
 
origine&
 \textbackslash{}psSolid&&\\[.5em]
 &object=plan&$x_0$ $y_0$ $z_0$&0 0 0\\
 \hline
 
path&
 \textbackslash{}psProjection&pscode&newpath 0 0 moveto\\
 \hline
 
phi&
 \textbackslash{}psSolid, \textbackslash{}psProjection&$\alpha$&0\\
 \hline
 
plangrid&
 \textbackslash{}psSolid&&\\[.5em]
 &object=plan&boolean&false\\
 \hline
 
planmarks&
 \textbackslash{}psSolid&&\\[.5em]
 &object=plan&boolean&false\\
 \hline
 
plansection&
 \textbackslash{}psSolid&\{plan$_1$ ... plan$_n$\} \textrm{\upshape where
 plan$_i$=}\[$a_i$ $b_i$ $c_i$ $d_i$\]&\\
 \hline
 
plansepare&
 \textbackslash{}psSolid&\{\[a b c d \]\}&\\
 \hline
 
\pagebreak
 
pos&
 \textbackslash{}psProjection&&\\[0.5em]
 &object=point&
 \upshape\ttfamily
 ul\~cl\~bl\~dl\~ub\~cb\~bb\~db\~uc\~cc\~bc\~dc\~ur\~cr\~br\~dr&cc\\
 \hline
 
QZ&
 \textbackslash{}psSolid, \textbackslash{}psSurface&value&0\\
 \hline
 
RotX, RotY, RotZ&
 \textbackslash{}psSolid&$\alpha$&0\\
 \hline
 
r&
 \textbackslash{}psSolid&&\\[.5em]
 &object=courbe&length&2\\
 \hline
 
r0&
 \textbackslash{}psSolid&&\\[.5em]
 &object=anneau\|tore\|troncone\|troncconecreux&length&1.5\\
 \hline
 
r1&
 \textbackslash{}psSolid&&\\[.5em]
 &object=anneau\|tore\|troncone\|troncconecreux&length&4\\
 \hline
 
range&
 \textbackslash{}psSolid&&\\[.5em]
 &object=cercle\|courbe\|courbeR2&$t_{\textrm{\upshape\scriptsize min}}$
 $t_{\textrm{\upshape\scriptsize max}}$&-5 5\\
 &&&\\[-0.6em]
 &object=surfacepara\-metree&$u_{\textrm{\upshape\scriptsize min}}$
 $u_{\textrm{\upshape\scriptsize max}}$
 $v_{\textrm{\upshape\scriptsize min}}$ $v_{\textrm{\upshape\scriptsize max}}$&\\
 \hline
 
resolution&
 \textbackslash{}psSolid&&\\[.5em]
 &object=courbe\|courbeR2\|ruban&$n$&36\\
 \hline
 
rm&
 \textbackslash{}psSolid&$i_0$ $i_1$ ... $i_n$&\\
 \hline
 
section&
 \textbackslash{}psSolid&&\\[.5em]
 &object=anneau&macro\{pscode\}&\textbackslash{}Section\\
 \hline
 
show&
 \textbackslash{}psSolid&\kwd{all} \~ $i_0$ $i_1$ ... $i_n$&\\
 \hline
 
showBase&
 \textbackslash{}psSolid&&\\[.5em]
 &object=plan&boolean&false\\
 \hline
 
showbase&
 \textbackslash{}psSolid&&\\[.5em]
 &object=plan&boolean&false\\
 \hline
 
showOrigin&
 \textbackslash{}axesIIID&boolean&true\\
 \hline
 
sommets&
 \textbackslash{}psSolid&&\\[.5em]
 &object=new&$x_1$ $y_1$ $z_1$ $x_2$ $y_2$ $z_2$ ... $x_n$ $y_n$ $z_n$&\\
 \hline
 
spotX,spotY, spotZ&
 \textbackslash{}psSurface, \textbackslash{}gridIIID&
 \upshape\ttfamily
 u\~ul\~l\~dl\~d\~dr\~r\~ur&\\
 \hline
 
stepX,stepY, stepZ&
 \textbackslash{}gridIIID&$n$&1\\[.5em]
 \hline
 
text&
 \textbackslash{}psProjection&&\\[0.5em]
 &object=point&string&\\
 \hline
 
theta&
 \textbackslash{}psSolid&&\\[.5em]
 &object=calottesphere&$\alpha$&90\\
 \hline
 
ticklength&
 \textbackslash{}gridIIID&$length$&0.2\\[.5em]
 \hline
 
transform&
 \textbackslash{}psSolid, \textbackslash{}defFunction
  &\{pscode\}\~function&\\[.5em]
 \hline
 
trunc&
 \textbackslash{}psSolid&
 \kwd{all} \~ $i_0$ $i_1$ ... $i_n$&\\
 \hline
 
trunccoeff&
 \textbackslash{}psSolid&value&0.2\\
 \hline
 
 
viewpoint&
 \textbackslash{}psset&$x$ $y$ $z$ \~ $r$ $\theta$ $\phi$
 \kwd{rtp2xyz}
 &10 10 10\\
 \hline
 
visibility&
 \textbackslash{}psSolid, \textbackslash{}psProjection&boolean&true\\
 \hline
 
 
Zmin&
 \textbackslash{}psSurface, \textbackslash{}gridIIID&value&-4\\
 \hline
 
Zmax&
 \textbackslash{}psSurface, \textbackslash{}gridIIID&value&4\\
 
\end{longtable}
 
\endinput