\section{Point} \subsection{Definition via coordinates} The object \verb+point+ defines a point. The simplest method is to use the argument \texttt{[args=$x$ $y$ $z$]} to specify its coordinates. If we have already named a point $M(x, y, z)$ (see chapter ``\textit{Advanced usage\/}''), we can easily use the argument \texttt{[args=$M$]}. \subsection{Some other definitions} There are some other possibilities for defining a point. Here a list of possible definitions with the appropriate arguments: \begin{itemize} \item \verb+[definition=solidgetsommet]+; \verb+args=+ $solid$ $k$. The vertex with index $k$ of the solid $solid$. \item \verb+[definition=solidcentreface]+; \verb+args=+ $solid$ $k$. The center of the face with index $k$ of the solid $solid$. \item \verb+[definition=isobarycentre3d]+; \verb+args=+ {\{$[$ $A_0$ $\ldots $ $A_{n}$ $]$\}}. {The isobarycenter of the system $[(A_0, 1); \ldots ; (A_n, 1)]$.} \item \verb+[definition=barycentre3d]+; \verb+args=+ {\{$[$ $A$ $a$ $B$ $b$ $]$\}}. {The barycenter of the system $[(A, a) ; (B, b)]$.} \item \verb+[definition=hompoint3d]+; \verb+args=+ {$M$ $A$ $\alpha $}. {The image of $M$ via a homothety with center $A$ and ratio $\alpha $.} \item \verb+[definition=sympoint3d]+; \verb+args=+ {$M$ $A$}. {The image of $M$ via the center of symmetry $A$}%I don't understand \item \verb+[definition=translatepoint3d]+; \verb+args=+ {$M$ $u$}. {The image of $M$ under the translation via the vector $\vec u$} \item \verb+[definition=scaleOpoint3d]+; \verb+args=+ {$x$ $y$ $z$ $k_1$ $k_2$ $k_3$}. {This gives a ``dilation'' \ of the coordinates of the point $M (x, y, z)$ on the axes $Ox$, $Oy$ and $Oz$ each multiplied by an appropriate factor $k_1$, $k_2$ and $k_3$} \item \verb+[definition=rotateOpoint3d]+; \verb+args=+ {$M$ $\alpha_x$ $\alpha_y$ $\alpha_z$}. {The image of $M$ through consecutive rotations -- centered at $O$ -- and with respective angles $\alpha_x$, $\alpha_y$ and $\alpha_z$ around the axes $Ox$, $Oy$ and $Oz$.} %% Projection orthogonale d'un point 3d sur un plan %% Mx My Mz (=le point a projeter) %% Ax Ay Az (=un point du plan) %% Vx Vy Vz (un vecteur normal au plan) \item \verb+[definition=orthoprojplane3d]+; \verb+args=+ {$M$ $A$ $\vec v$}. {The projection of the point $M$ to the plane $P$ which is defined by the point $A$ and the vector $\vec v$, perpendicular to $P$.} \item \verb+[definition=milieu3d]+; \verb+args=+ {$A$ $B$}. {The midpoint of $[AB]$} \item \verb+[definition=addv3d]+; \verb+args=+ {$A$ $u$}. {Gives the point $B$ so that $\overrightarrow {AB} = \vec u$} \end{itemize}