# Source : actinequafig.mp

actinequafig.mp
prologues:=2;
defaultfont:="CMR10";
input boxes;
input constantes;
%% Choix de LaTeX
verbatimtex
%&latex
\documentclass[a4paper]{article}
\usepackage[latin1]{inputenc}
\usepackage[frenchb]{babel}
\usepackage{amsmath}
\begin{document}
etex
def cercle(expr p,q)=%centre-rayon
begingroup
save $; path$;
$=fullcircle scaled (2*q) shifted p;$
endgroup
enddef;
beginfig(1);
%Définition des boites rondes
circleit.r0(btex $\times 2$ etex);
circleit.s0(btex $\times 2$ etex);
circleit.r1(btex $\times 3$ etex);
circleit.s1(btex $\times 3$ etex);
circleit.r2(btex $\times \dfrac{1}{4}$ etex);
circleit.s2(btex $\times \dfrac{1}{4}$ etex);
circleit.r3(btex $\times 6$ etex);
circleit.s3(btex $\times 6$ etex);
circleit.r4(btex $\times \dfrac{5}{2}$ etex);
circleit.s4(btex $\times \dfrac{5}{2}$ etex);
%Définition des boites rectangulaires
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b0(btex \hbox to 0.75cm{\hfill$25$\hfill} etex);
boxit.c0(btex \hbox to 0.75cm{\hfill$<$\hfill} etex);
boxit.d0(btex \hbox to 0.75cm{\hfill$50$\hfill} etex);
b0.c=(4*u,8*u);
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f0(btex \hbox to 0.75cm{\hfill\phantom{$25$}\hfill} etex);
boxit.g0(btex \hbox to 0.75cm{\hfill\phantom{$\leq$}\hfill} etex);
boxit.h0(btex \hbox to 0.75cm{\hfill\phantom{$50$}\hfill} etex);
f0.c=b0.c shifted (u*(0,(-3)));
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b1(btex \hbox to 0.75cm{\hfill$-4$\hfill} etex);
boxit.c1(btex \hbox to 0.75cm{\hfill$>$\hfill} etex);
boxit.d1(btex \hbox to 0.75cm{\hfill$-5$\hfill} etex);
b1.c=b0.c shifted (4*u,0);
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f1(btex \hbox to 0.75cm{\hfill\phantom{$-4$}\hfill} etex);
boxit.g1(btex \hbox to 0.75cm{\hfill\phantom{$>$} \hfill} etex);
boxit.h1(btex \hbox to 0.75cm{\hfill\phantom{$-5$} \hfill} etex);
f1.c=f0.c shifted (4*u,0);
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b2(btex \hbox to 0.75cm{\hfill$\dfrac{4}{5}$\hfill} etex);
boxit.c2(btex \hbox to 0.75cm{\hfill$=$\hfill} etex);
boxit.d2(btex \hbox to 0.75cm{\hfill$\dfrac{12}{15}$\hfill} etex);
b2.c=b0.c shifted (2*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f2(btex \hbox to 0.75cm{\hfill\phantom{$\dfrac{4}{5}$}\hfill}  etex);
boxit.g2(btex \hbox to 0.75cm{\hfill\phantom{$=$}\hfill}  etex);
boxit.h2(btex \hbox to 0.75cm{\hfill\phantom{$\dfrac{12}{15}$}\hfill} etex);
f2.c=f0.c shifted (2*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b3(btex \hbox to 0.75cm{\hfill$\dfrac{1}{3}$\hfill} etex);
boxit.c3(btex \hbox to 0.75cm{\hfill$\leq$\hfill} etex);
boxit.d3(btex \hbox to 0.75cm{\hfill$\dfrac{2}{3}$\hfill} etex);
b3.c=b0.c shifted (3*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f3(btex \hbox to 0.75cm{\hfill\phantom{$\dfrac{1}{3}$}\hfill} etex);
boxit.g3(btex \hbox to 0.75cm{\hfill\phantom{$\leq$}\hfill} etex);
boxit.h3(btex \hbox to 0.75cm{\hfill\phantom{$\dfrac{2}{3}$}\hfill} etex);
f3.c=f0.c shifted (3*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b4(btex \hbox to 0.75cm{\hfill$\dfrac{1}{5}$\hfill} etex);
boxit.c4(btex \hbox to 0.75cm{\hfill$\geq$\hfill} etex);
boxit.d4(btex \hbox to 0.75cm{\hfill$\dfrac{1}{10}$\hfill} etex);
b4.c=b0.c shifted (4*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f4(btex \hbox to 0.75cm{\hfill\phantom{$\dfrac{1}{5}$}\hfill} etex);
boxit.g4(btex \hbox to 0.75cm{\hfill\phantom{$\geq$}\hfill} etex);
boxit.h4(btex \hbox to 0.75cm{\hfill\phantom{$\dfrac{1}{10}$}\hfill} etex);
f4.c=f0.c shifted (4*(4*u,0));
path p[],q[],u[],v[];
r0.c=(4*u,ypart(1/2[b0.c,f0.c]));
s0.c=r0.c shifted (d0.c-b0.c);
r1.c=r0.c shifted (4*u,0);
s1.c=r1.c shifted (d1.c-b1.c);
r2.c=r0.c shifted (2*(4*u,0));
s2.c=r2.c shifted (d2.c-b2.c);
r3.c=r0.c shifted (3*(4*u,0));
s3.c=r3.c shifted (d3.c-b3.c);
r4.c=r0.c shifted (4*(4*u,0));
s4.c=r4.c shifted (d4.c-b4.c);
%dessin des fleches vers la deuxieme ligne a remplir
for i=0 upto 4:
drawboxed(b[i],c[i],d[i],f[i],g[i],h[i]);
p[i]=b[i].c{dir-135}..r[i].c{dir-45};
drawarrow p[i] cutbefore bpath.b[i] cutafter bpath.r[i];
q[i]=d[i].c{dir-45}..s[i].c{dir-135};
drawarrow q[i] cutbefore bpath.d[i] cutafter bpath.s[i];
u[i]=r[i].c{dir-135}..f[i].c{dir-45};
drawarrow u[i] cutbefore bpath.r[i] cutafter bpath.f[i];
v[i]=s[i].c{dir-45}..h[i].c{dir-135};
drawarrow v[i] cutbefore bpath.s[i] cutafter bpath.h[i];
drawboxed(r[i],s[i]);
endfor
endfig;
beginfig(2);
%Définition des boites rondes
circleit.r0(btex $\times (-3)$ etex);
r0.dx=r0.dy;
circleit.s0(btex $\times (-3)$ etex);
s0.dx=s0.dy;
circleit.r1(btex $\times (-1)$ etex);
r1.dx=r1.dy;
circleit.s1(btex $\times (-1)$ etex);
s1.dx=s1.dy;
circleit.r2(btex $\times (-5)$ etex);
r2.dx=r2.dy;
circleit.s2(btex $\times (-5)$ etex);
s2.dx=s2.dy;
circleit.r3(btex $\times (-\dfrac{1}{2})$ etex);
r3.dx=r3.dy;
circleit.s3(btex $\times (-\dfrac{1}{2})$ etex);
s3.dx=s3.dy;
circleit.r4(btex $\times (-2)$ etex);
r4.dx=r4.dy;
circleit.s4(btex $\times (-2)$ etex);
s4.dx=s4.dy;
%Définition des boites rectangulaires
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b0(btex \hbox to 0.75cm{\hfill$\dfrac{3}{4}$\hfill} etex);
boxit.c0(btex \hbox to 0.75cm{\hfill$<$\hfill} etex);
boxit.d0(btex \hbox to 0.75cm{\hfill$1$\hfill} etex);
b0.c=(4*u,8*u);
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f0(btex \hbox to 0.75cm{\hfill \phantom{$\dfrac{3}{4}$}\hfill} etex);
boxit.g0(btex \hbox to 0.75cm{\hfill \phantom{$\leq$}\hfill} etex);
boxit.h0(btex \hbox to 0.75cm{\hfill \phantom{$1$} \hfill} etex);
f0.c=b0.c shifted (u*(0,(-3)));
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b1(btex \hbox to 0.75cm{\hfill $\sqrt 7$\hfill} etex);
boxit.c1(btex \hbox to 0.75cm{\hfill $>$ \hfill} etex);
boxit.d1(btex \hbox to 0.75cm{\hfill $\sqrt 3$ \hfill} etex);
b1.c=b0.c shifted (4*u,0);
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f1(btex \hbox to 0.75cm{\hfill \phantom{$\sqrt 7$} \hfill} etex);
boxit.g1(btex \hbox to 0.75cm{\hfill \phantom{$>$} \hfill} etex);
boxit.h1(btex \hbox to 0.75cm{\hfill \phantom{$\sqrt 3$} \hfill} etex);

f1.c=f0.c shifted (4*u,0);
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b2(btex \hbox to 0.75cm{\hfill $\sqrt 50$ \hfill} etex);
boxit.c2(btex \hbox to 0.75cm{\hfill $=$ \hfill} etex);
boxit.d2(btex \hbox to 0.75cm{\hfill $5\sqrt 2$ \hfill} etex);
b2.c=b0.c shifted (2*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f2(btex \hbox to 0.75cm{\hfill \phantom{$\sqrt 50$}\hfill} etex);
boxit.g2(btex \hbox to 0.75cm{\hfill \phantom{$=$}\hfill} etex);
boxit.h2(btex \hbox to 0.75cm{\hfill \phantom{$5\sqrt 2$}\hfill} etex);
f2.c=f0.c shifted (2*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b3(btex \hbox to 0.75cm{\hfill $1$ \hfill} etex);
boxit.c3(btex \hbox to 0.75cm{\hfill $\leq$\hfill} etex);
boxit.d3(btex \hbox to 0.75cm{\hfill $2$\hfill} etex);
b3.c=b0.c shifted (3*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f3(btex \hbox to 0.75cm{\hfill \phantom{$1$} \hfill} etex);
boxit.g3(btex \hbox to 0.75cm{\hfill \phantom{$\leq$} \hfill} etex);
boxit.h3(btex \hbox to 0.75cm{\hfill \phantom{$2$}\hfill} etex);
f3.c=f0.c shifted (3*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b4(btex \hbox to 0.75cm{\hfill $\dfrac{13}{2}$ \hfill} etex);
boxit.c4(btex \hbox to 0.75 cm{\hfill $\geq$ \hfill} etex);
boxit.d4(btex \hbox to 0.75 cm{\hfill $\dfrac{11}{2}$ \hfill} etex);
b4.c=b0.c shifted (4*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f4(btex \hbox to 0.75cm{\hfill \phantom{$\dfrac{13}{2}$}\hfill}  etex);
boxit.g4(btex \hbox to 0.75cm{\hfill \phantom{$\geq$}\hfill}  etex);
boxit.h4(btex \hbox to 0.75cm{\hfill \phantom{$\dfrac{11}{2}$}\hfill} etex);
f4.c=f0.c shifted (4*(4*u,0));
path p[],q[],u[],v[];
r0.c=(4*u,ypart(1/2[b0.c,f0.c]));
s0.c=r0.c shifted (d0.c-b0.c);
r1.c=r0.c shifted (4*u,0);
s1.c=r1.c shifted (d1.c-b1.c);
r2.c=r0.c shifted (2*(4*u,0));
s2.c=r2.c shifted (d2.c-b2.c);
r3.c=r0.c shifted (3*(4*u,0));
s3.c=r3.c shifted (d3.c-b3.c);
r4.c=r0.c shifted (4*(4*u,0));
s4.c=r4.c shifted (d4.c-b4.c);
%dessin des fleches vers la deuxieme ligne a remplir
for i=0 upto 4:
drawboxed(b[i],c[i],d[i],f[i],g[i],h[i]);
p[i]=b[i].c{dir-135}..r[i].c{dir-45};
drawarrow p[i] cutbefore bpath.b[i] cutafter bpath.r[i];
q[i]=d[i].c{dir-45}..s[i].c{dir-135};
drawarrow q[i] cutbefore bpath.d[i] cutafter bpath.s[i];
u[i]=r[i].c{dir-135}..f[i].c{dir-45};
drawarrow u[i] cutbefore bpath.r[i] cutafter bpath.f[i];
v[i]=s[i].c{dir-45}..h[i].c{dir-135};
drawarrow v[i] cutbefore bpath.s[i] cutafter bpath.h[i];
drawboxed(r[i],s[i]);
endfor
endfig;
beginfig(3);
%Définition des boites rondes
circleit.r0(btex $+2$ etex);
r0.dx=r0.dy;
circleit.s0(btex $+2$ etex);
so.dx=s0.dy;
circleit.r1(btex $+3$ etex);
r1.dx=r1.dy;
circleit.s1(btex $+3$ etex);
s1.dx=s1.dy;
circleit.r2(btex $+\dfrac{1}{5}$ etex);
r2.dx=r2.dy;
circleit.s2(btex $+\dfrac{1}{5}$ etex);
s2.dx=s2.dy;
circleit.r3(btex $+6$ etex);
r3.dx=r3.dy;
circleit.s3(btex $+6$ etex);
s3.dx=s3.dy;
circleit.r4(btex $+\dfrac{3}{5}$ etex);
r4.dx=r4.dy;
circleit.s4(btex $+\dfrac{3}{5}$ etex);
s4.dx=s4.dy;
%Définition des boites rectangulaires
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b0(btex \hbox to 0.75cm{\hfill$25$\hfill} etex);
boxit.c0(btex \hbox to 0.75cm{\hfill$<$\hfill} etex);
boxit.d0(btex \hbox to 0.75cm{\hfill$50$\hfill} etex);
b0.c=(4*u,8*u);
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f0(btex \hbox to 0.75cm{\hfill \phantom{$25$}\hfill} etex);
boxit.g0(btex \hbox to 0.75cm{\hfill \phantom{$\leq$}\hfill} etex);
boxit.h0(btex \hbox to 0.75cm{\hfill \phantom{$50$} \hfill} etex);
f0.c=b0.c shifted (u*(0,(-3)));
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b1(btex \hbox to 0.75cm{\hfill $-4$\hfill} etex);
boxit.c1(btex \hbox to 0.75cm{\hfill $>$ \hfill} etex);
boxit.d1(btex \hbox to 0.75cm{\hfill $-5$ \hfill} etex);
b1.c=b0.c shifted (4*u,0);
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f1(btex \hbox to 0.75cm{\hfill \phantom{$-4$} \hfill} etex);
boxit.g1(btex \hbox to 0.75cm{\hfill \phantom{$>$} \hfill} etex);
boxit.h1(btex \hbox to 0.75cm{\hfill \phantom{$-5$} \hfill} etex);

f1.c=f0.c shifted (4*u,0);
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b2(btex \hbox to 0.75cm{\hfill $\dfrac{4}{5}$ \hfill} etex);
boxit.c2(btex \hbox to 0.75cm{\hfill $=$ \hfill} etex);
boxit.d2(btex \hbox to 0.75cm{\hfill $\dfrac{12}{15}$ \hfill} etex);
b2.c=b0.c shifted (2*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f2(btex \hbox to 0.75cm{\hfill \phantom{$\dfrac{4}{5}$}\hfill}  etex);
boxit.g2(btex \hbox to 0.75cm{\hfill \phantom{$=$}\hfill}  etex);
boxit.h2(btex \hbox to 0.75cm{\hfill \phantom{$\dfrac{12}{15}$}\hfill} etex);
f2.c=f0.c shifted (2*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b3(btex \hbox to 0.75cm{\hfill $\dfrac{1}{3}$ \hfill} etex);
boxit.c3(btex \hbox to 0.75cm{\hfill $\leq$\hfill} etex);
boxit.d3(btex \hbox to 0.75cm{\hfill $\dfrac{2}{3}$\hfill} etex);
b3.c=b0.c shifted (3*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f3(btex \hbox to 0.75cm{\hfill \phantom{$\dfrac{1}{3}$} \hfill} etex);
boxit.g3(btex \hbox to 0.75cm{\hfill \phantom{$\leq$} \hfill} etex);
boxit.h3(btex \hbox to 0.75cm{\hfill \phantom{$\dfrac{2}{3}$}\hfill} etex);
f3.c=f0.c shifted (3*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b4(btex \hbox to 0.75cm{$\dfrac{1}{5}$ \hfill} etex);
boxit.c4(btex \hbox to 0.75cm{$\geq$ \hfill} etex);
boxit.d4(btex \hbox to 0.75cm{$\dfrac{1}{10}$ \hfill} etex);
b4.c=b0.c shifted (4*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f4(btex \hbox to 0.75cm{\hfill \phantom{$\dfrac{1}{5}$}\hfill} etex);
boxit.g4(btex \hbox to 0.75cm{\hfill \phantom{$\geq$}\hfill} etex);
boxit.h4(btex \hbox to 0.75cm{\hfill \phantom{$\dfrac{1}{10}$}\hfill} etex);
f4.c=f0.c shifted (4*(4*u,0));
path p[],q[],u[],v[];
r0.c=(4*u,ypart(1/2[b0.c,f0.c]));
s0.c=r0.c shifted (d0.c-b0.c);
r1.c=r0.c shifted (4*u,0);
s1.c=r1.c shifted (d1.c-b1.c);
r2.c=r0.c shifted (2*(4*u,0));
s2.c=r2.c shifted (d2.c-b2.c);
r3.c=r0.c shifted (3*(4*u,0));
s3.c=r3.c shifted (d3.c-b3.c);
r4.c=r0.c shifted (4*(4*u,0));
s4.c=r4.c shifted (d4.c-b4.c);
%dessin des fleches vers la deuxieme ligne a remplir
for i=0 upto 4:
drawboxed(b[i],c[i],d[i],f[i],g[i],h[i]);
p[i]=b[i].c{dir-135}..r[i].c{dir-45};
drawarrow p[i] cutbefore bpath.b[i] cutafter bpath.r[i];
q[i]=d[i].c{dir-45}..s[i].c{dir-135};
drawarrow q[i] cutbefore bpath.d[i] cutafter bpath.s[i];
u[i]=r[i].c{dir-135}..f[i].c{dir-45};
drawarrow u[i] cutbefore bpath.r[i] cutafter bpath.f[i];
v[i]=s[i].c{dir-45}..h[i].c{dir-135};
drawarrow v[i] cutbefore bpath.s[i] cutafter bpath.h[i];
drawboxed(r[i],s[i]);
endfor
endfig;
beginfig(4);
%Définition des boites rondes
circleit.r0(btex $-3$ etex);
r0.dx=r0.dy;
circleit.s0(btex $-3$ etex);
so.dx=s0.dy;
circleit.r1(btex $-1$ etex);
r1.dx=r1.dy;
circleit.s1(btex $-1$ etex);
s1.dx=s1.dy;
circleit.r2(btex $\times (-5)$ etex);
r2.dx=r2.dy;
circleit.s2(btex $\times (-5)$ etex);
s2.dx=s2.dy;
circleit.r3(btex $-\dfrac{1}{2}$ etex);
r3.dx=r3.dy;
circleit.s3(btex $-\dfrac{1}{2}$ etex);
s3.dx=s3.dy;
circleit.r4(btex $-2$ etex);
r4.dx=r4.dy;
circleit.s4(btex $-2$ etex);
s4.dx=s4.dy;
%Définition des boites rectangulaires
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b0(btex \hbox to 0.75cm{\hfill$\dfrac{3}{4}$\hfill} etex);
boxit.c0(btex \hbox to 0.75cm{\hfill$<$\hfill} etex);
boxit.d0(btex \hbox to 0.75cm{\hfill$1$\hfill} etex);
b0.c=(4*u,8*u);
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f0(btex \hbox to 0.75cm{\phantom{$\dfrac{3}{4}$}\hfill} etex);
boxit.g0(btex \hbox to 0.75cm{\phantom{$\leq$}\hfill} etex);
boxit.h0(btex \hbox to 0.75cm{\phantom{$1$} \hfill} etex);
f0.c=b0.c shifted (u*(0,(-3)));
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b1(btex \hbox to 0.75cm{\hfill $\sqrt 7$\hfill} etex);
boxit.c1(btex \hbox to 0.75cm{\hfill $>$ \hfill} etex);
boxit.d1(btex \hbox to 0.75cm{$\hfill \sqrt 3$ \hfill} etex);
b1.c=b0.c shifted (4*u,0);
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f1(btex \hbox to 0.75cm{\hfill \phantom{\hfill $\sqrt 7$} \hfill} etex);
boxit.g1(btex \hbox to 0.75cm{\hfill \phantom{$>$} \hfill} etex);
boxit.h1(btex \hbox to 0.75cm{\hfill \phantom{$\sqrt 3$} \hfill} etex);

f1.c=f0.c shifted (4*u,0);
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b2(btex \hbox to 0.75cm{\hfill $\sqrt 50$ \hfill} etex);
boxit.c2(btex \hbox to 0.75cm{\hfill $=$ \hfill} etex);
boxit.d2(btex \hbox to 0.75cm{\hfill $5\sqrt 2$ \hfill} etex);
b2.c=b0.c shifted (2*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f2(btex \hbox to 0.75cm{\hfill \phantom{$\sqrt 50$}\hfill} etex);
boxit.g2(btex \hbox to 0.75cm{\hfill \phantom{$=$}\hfill} etex);
boxit.h2(btex \hbox to 0.75cm{\hfill \phantom{$5\sqrt 2$}\hfill} etex);
f2.c=f0.c shifted (2*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b3(btex \hbox to 0.75cm{\hfill $1$ \hfill} etex);
boxit.c3(btex \hbox to 0.75cm{\hfill $\leq$\hfill} etex);
boxit.d3(btex \hbox to 0.75cm{\hfill $2$\hfill} etex);
b3.c=b0.c shifted (3*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f3(btex \hbox to 0.75cm{\hfill \phantom{$1$} \hfill} etex);
boxit.g3(btex \hbox to 0.75cm{\hfill \phantom{$\leq$} \hfill} etex);
boxit.h3(btex \hbox to 0.75cm{\hfill \phantom{$2$}\hfill} etex);
f3.c=f0.c shifted (3*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);%a et b sont les noms conventionnels de deux boi%tes consecutives
boxit.b4(btex \hbox to 0.75cm{\hfill $\dfrac{13}{2}$ \hfill} etex);
boxit.c4(btex \hbox to 0.75cm{\hfill $\geq$ \hfill} etex);
boxit.d4(btex \hbox to 0.75cm{\hfill $\dfrac{11}{2}$ \hfill} etex);
b4.c=b0.c shifted (4*(4*u,0));
boxjoin(a.se=b.sw;a.ne=b.nw);
boxit.f4(btex \hbox to 0.75cm{\hfill \phantom{$\dfrac{13}{2}$}\hfill} etex);
boxit.g4(btex \hbox to 0.75cm{\hfill \phantom{$\geq$}\hfill} etex);
boxit.h4(btex \hbox to 0.75cm{\hfill \phantom{$\dfrac{11}{2}$}\hfill} etex);
f4.c=f0.c shifted (4*(4*u,0));
path p[],q[],u[],v[];
r0.c=(4*u,ypart(1/2[b0.c,f0.c]));
s0.c=r0.c shifted (d0.c-b0.c);
r1.c=r0.c shifted (4*u,0);
s1.c=r1.c shifted (d1.c-b1.c);
r2.c=r0.c shifted (2*(4*u,0));
s2.c=r2.c shifted (d2.c-b2.c);
r3.c=r0.c shifted (3*(4*u,0));
s3.c=r3.c shifted (d3.c-b3.c);
r4.c=r0.c shifted (4*(4*u,0));
s4.c=r4.c shifted (d4.c-b4.c);
%dessin des fleches vers la deuxieme ligne a remplir
for i=0 upto 4:
drawboxed(b[i],c[i],d[i],f[i],g[i],h[i]);
p[i]=b[i].c{dir-135}..r[i].c{dir-45};
drawarrow p[i] cutbefore bpath.b[i] cutafter bpath.r[i];
q[i]=d[i].c{dir-45}..s[i].c{dir-135};
drawarrow q[i] cutbefore bpath.d[i] cutafter bpath.s[i];
u[i]=r[i].c{dir-135}..f[i].c{dir-45};
drawarrow u[i] cutbefore bpath.r[i] cutafter bpath.f[i];
v[i]=s[i].c{dir-45}..h[i].c{dir-135};
drawarrow v[i] cutbefore bpath.s[i] cutafter bpath.h[i];
drawboxed(r[i],s[i]);
endfor
endfig;
end