Retour

Source : bissectrice.mp


bissectrice.mp
%%[slideshow]
\input slideshow;
author("Christophe Poulain & Régis Leclercq");
title("Construction de la bissectrice d'un angle");
%%[navigation]
\input navigation;
couleurboutons:=(1,1,0.3);
couleurfond:=(0,0,0.7);
%% Choix de LaTeX
verbatimtex
%&latex
\documentclass[a4paper]{article}
\usepackage[latin1]{inputenc}
\usepackage[frenchb]{babel}
\usepackage[dvips]{color,graphicx}
\begin{document}
etex
%%[geometrie]
input geometrie1
%%[Image]
picture cp;
cp=thelabel(btex \sf C.POULAIN \& R.LECLERCQ -- 2001 etex scaled 0.5,(0.95lawidth,0.03laheight));
footer(image(draw cp withcolor blue;));
%% -- navigation PDF & logos
def navPDFlogos =
 init_navigation;
 navigation;
 internavigation;
enddef;
extra_endfig := extra_endfig & "navPDFlogos;";
% gs will need this
prologues:=2;
%fond d'écran
noslides := 11;
def doback =
background := image(drawgradient((charcode/noslides)[white,white], (charcode/noslides)[white,white]););
enddef;
doback;
%cadre
path cadre;
cadre=(0.05lawidth,0.9laheight)--(0.95lawidth,0.9laheight)--(0.95lawidth,0.98laheight)--(0.05lawidth,0.98laheight)--cycle;
draw cadre;
%% -- instructions
color C[];
C6=0.8white;
vardef instruction(expr s) =
  fill cadre withcolor C6;
  label.rt(s,p100);
enddef;
%[Points]
unit=1cm;
pair p[];
pair q[];
path cb,ci,cj;
numeric lca,lcb,lcaa;
p0=(0.3lawidth,0.40laheight);%B
p1=(0.7lawidth,0.8laheight);%A
p2=(0.6lawidth,0.3laheight);%C
cb=cercle(p0,3cm);
p3=(p0--p1) intersectionpoint cb;%I
p4=(p0--p2) intersectionpoint cb;%J
ci=cercle(p3,abs(p4-p3));
cj=cercle(p4,abs(p4-p3));
p5=cj intersectionpoint ci;%R
lci=(angle(p3-p0))*(length cb)/360;
lcj=(length cb)+(angle(p4-p0))*(length cb)/360;
lcir=(length ci)+(angle(p5-p3))*(length ci)/360;
lcjr=(angle(p5-p4))*(length cj)/360;
p100=(0.07lawidth,0.94laheight);
%[Animation]
nextfig;
 label(btex \Large\bf Construction de etex scaled 2,(.502lawidth,.548laheight)) withcolor 0.3white;
 blabel(btex \Large\bf Construction de etex scaled 2,(.50lawidth,.55laheight));
 label(btex \Large\bf la bissectrice d'un angle etex scaled 2,(.502lawidth,.408laheight)) withcolor 0.3white;
 blabel(btex \Large\bf la bissectrice d'un angle etex scaled 2,(.5lawidth,.41laheight));
 hyperdest("start");
endfig;
discontinue;
nextfig;
instruction(btex 1. Trace un angle $\widehat{ABC}$. etex);
draw 1.1[p0,p1]--p0--1.1[p0,p2];
dotlabel.top(btex $A$ etex,p1);
label.top(btex $B$ etex,p0);
dotlabel.bot(btex $C$ etex,p2);
endfig;
continue;
nextfig;
instruction(btex 2. Trace un cercle $\cal C$ de centre $B$ (le sommet de l'angle) et de rayon quelconque. etex);
draw (subpath(0,0.8lci) of cb) dashed evenly withcolor green;
draw (subpath(0.8lci,1.2lci) of cb) withcolor blue;
draw (subpath(1.2lci,0.95lcj) of cb) dashed evenly withcolor green;
draw (subpath(0.95lcj,1.05lcj) of cb) withcolor blue;
draw (subpath(1.05lcj,length cb) of cb) dashed evenly withcolor green;
endfig;
continue;
nextfig;
instruction(btex 3. Le cercle $\cal C$ coupe la demi-droite $[BA)$ en $I$. etex);
dotlabel.top(btex $I$ etex,p3);
endfig;
nextfig;
instruction(btex 4. Le cercle $\cal C$ coupe la demi-droite $[BC)$ en $J$. etex);
labeloffset:=6pt;
dotlabel.lrt(btex $J$ etex,p4);
labeloffset:=3bp;
endfig;
nextfig;
instruction(btex 5. Trace un cercle ${\cal C}_1$ de centre $I$ et de rayon $IJ$. etex);
draw (subpath(0,0.8lci) of cb) dashed evenly withcolor white;
draw (subpath(1.2lci,0.95lcj) of cb) dashed evenly withcolor white;
draw (subpath(1.05lcj,length cb) of cb) dashed evenly withcolor white;
draw (subpath(0,0.95lcir) of ci) dashed evenly withcolor green;
draw (subpath(0.95lcir,1.05lcir) of ci) withcolor blue;
draw (subpath(1.05lcir,length ci) of ci) dashed evenly withcolor green;
endfig;
nextfig;
instruction(btex 6. Trace un cercle ${\cal C}_2$ de centre $J$ et de \underline{\bf même rayon} $IJ$. etex);
draw (subpath(0,0.95lcir) of ci) dashed evenly withcolor white;
draw (subpath(1.05lcir,length ci) of ci) dashed evenly withcolor white;
draw (subpath(0,0.75lcjr) of cj) dashed evenly withcolor green;
draw (subpath(0.75lcjr,1.25lcjr) of cj) withcolor blue;
draw (subpath(1.25lcjr,length cj) of cj) dashed evenly withcolor green;
endfig;
nextfig;
instruction(btex 6. Les cercles ${\cal C}_1$ et ${\cal C}_2$ se coupent en $R$. etex);
draw (subpath(0,0.75lcjr) of cj) dashed evenly withcolor white;
draw (subpath(1.25lcjr,length cj) of cj) dashed evenly withcolor white;
labeloffset:=12pt;
dotlabel.lrt(btex $R$ etex,p5);
labeloffset:=3bp;
endfig;
nextfig;
instruction(btex 7. La droite $(BR)$ est la bissectrice de l'angle $\widehat{ABC}$. etex);
draw 2[p0,p5]--1.1[p5,p0] withcolor red;
endfig;
nextfig;
draw codeang(p5,p0,p1,1);
draw codeang(p5,p0,p2,1.5);
endfig;
nextfig;
discontinue;
instruction(btex \underline{Récapitulatif} : On souhaite construire la bissectrice d'un angle $\widehat{ABC}$. etex);
q1=(0.2lawidth,0.3laheight);%A
q0=(0.5lawidth,0.6laheight);%B
q2=(0.65lawidth,0.45laheight);%C
path cd;
cd=cercle(q0,2cm);
q3=(q0--q1) intersectionpoint cd;%I
q4=(q0--q2) intersectionpoint cd;%J
ldi=(length cd)+(angle(q3-q0))*(length cd)/360;
ldj=(length cd)+(angle(q4-q0))*(length cd)/360;
draw 1.1[q0,q1]--q0--1.1[q0,q2];
dotlabel.top(btex $A$ etex,q1);
dotlabel.top(btex $C$ etex,q2);
label.urt(btex $B$ etex,q0);
endfig;
nextfig;
textcolour:=0.5green;
blabel.rt(btex 1. Trace un cercle ${\cal C}$ de centre $B$ et de rayon quelconque. etex, (0.05lawidth,0.85laheight));
draw (subpath(0.85ldi,1.15ldi) of cd) withcolor blue;
draw (subpath(0.95ldj,1.05ldj) of cd) withcolor blue;
endfig;
nextfig;
textcolour:=0.5green;
blabel.rt(btex Le cercle $\cal C$ coupe la demi-droite $[BA)$ en $I$ et la demi-droite $[BC)$ en $J$. etex,(0.075lawidth,0.82laheight));
dotlabel.top(btex $I$ etex,q3);
dotlabel.top(btex $J$ etex,q4);
endfig;
nextfig;
draw (0.05lawidth,0.85laheight)--(0.05lawidth,0.78laheight);
drawarrow (0.05lawidth,0.78laheight)--(0.1lawidth,0.78laheight);
endfig;
nextfig;
textcolour:=0.5blue;
blabel.rt(btex 2. Trace le cercle de centre ${\cal C}_1$ de centre $I$ et de rayon $IJ$. etex, (0.1lawidth,0.78laheight));
path cdi,cdj;
cdi=cercle(q3,abs(q3-q4));
cdj=cercle(q4,abs(q4-q3));
q6=cdj intersectionpoint cdi;
q5=syma(q6,q3,q4);
lcdi=(length cdi)+(angle(q5-q3))*(length cdi)/360;
draw (subpath(0.9lcdi,1.1lcdi) of cdi) withcolor blue;
endfig;
nextfig;
textcolour:=0.5blue;
blabel.rt(btex Trace le cercle ${\cal C}_2$ de centre $J$ et de rayon $IJ$. etex,(0.125lawidth,0.75laheight));
lcdj=(length cdj)+(angle(q5-q4))*(length cdj)/360;
draw (subpath(0.9lcdj,1.1lcdj) of cdj) withcolor blue;
endfig;
nextfig;
textcolour:=0.5blue;
blabel.rt(btex Les cercles ${\cal C}_1$ et ${\cal C}_2$ se coupent en $R$. etex,(0.125lawidth,0.72laheight));
labeloffset:=9pt;
dotlabel.llft(btex $R$ etex,q5);
labeloffset:=3bp;
endfig;
nextfig;
textcolour:=red;
drawarrow (0.05lawidth,0.68laheight)--(0.15lawidth,0.68laheight);
blabel.rt(btex La droite $(BR)$ est la bissectrice de l'angle $\widehat{ABC}$. etex, (0.15lawidth,0.68laheight));
draw 1.8[q0,q5]--1.1[q5,q0] withcolor 0.75[blue,red];
draw codeang(q1,q0,q5,0.8);draw codeang(q1,q0,q5,0.85);
draw codeang(q5,q0,q2,1);draw codeang(q5,q0,q2,1.05);
endfig;
end