Retour

Source : plaisir3fig10.mp


plaisir3fig10.mp
\input slideshow;
author("Christophe Poulain & Régis Leclercq");
title("Le Plaisir de la géométrie : fiche 310");
%%[navigation]
\input navigation;
couleurboutons:=(1,1,0.3);
couleurfond:=(0,0,0.7);
%% Choix de LaTeX
verbatimtex
%&latex
\documentclass[a4paper]{article}
\usepackage[latin1]{inputenc}
\usepackage[frenchb]{babel}
\usepackage[dvips]{color,graphicx}
\begin{document}
\footnotesize
etex
%%[geometrie]
%input geometrie1
def orthocentre(expr p,q,r )=%(sommet-côté opposé)
  begingroup
    save $;
    pair $;
    ($-p) rotated 90=whatever*(r-q);
    ($-q) rotated 90=whatever*(p-r);
    $
  endgroup
enddef;
def cercle(expr p,q)=%centre-rayon
  begingroup
    save $;
    path $;
    $=fullcircle scaled (2*q) shifted p;
    $
  endgroup
enddef;
def droite(expr a,b)=%Points
  begingroup
    save $;
    path $;
    $=(-3)[a,b]--3[a,b];
    $
  endgroup
enddef;
def codeang(expr p,q,r,n)=%point-sommet-point(sens direct)-rayon du codage
  begingroup
    save $,cc,b,c,f,seg,sege,d,e;
    picture $;
    $=currentpicture;
    path cc;%cercle pour le codage
    cc=fullcircle scaled (2*n*unit) shifted q;
    pair b,c,f;
    path seg,sege;
    seg=p--q;
    sege=q--r;
    b=cc intersectionpoint seg;
    c=cc intersectionpoint sege;
    numeric d,e;
    d=(angle(b-q))*(length cc)/360;
    e=(angle(c-q))*(length cc)/360;
    draw subpath(d,e) of cc;
    $
  endgroup
enddef;
vardef codeperp(expr a,b,c) =
  (b+5*unitvector(a-b))--(b+5*unitvector(a-b)+5*unitvector(c-b))--(b+5*unitvector(c-b))
enddef;
def perp(expr p,q,r)=%point-droite
  begingroup
    save $,cc,ce,cd,cf;
    picture $;
    pair cc,ce;
    path cd,cf;
    $=currentpicture;
    cc=(r-q) rotated 90 shifted q;
    ce=cc shifted (p-q);
    cd=droite(cc shifted (p-q),q shifted (p-q));
    draw cd dashed evenly withcolor blue;
    cf=droite(q,r);
    draw codeperp(ce,cf intersectionpoint cd,r);
    $
  endgroup
enddef;
%%[Image]
picture cp;
cp=thelabel(btex \sf C.POULAIN \& R.LECLERQ -- 2001 etex scaled 0.5,(0.85lawidth,0.03laheight));
footer(image(draw cp withcolor blue;));
%% -- navigation PDF & logos
def navPDFlogos =
 init_navigation;
 navigation;
 internavigation;
enddef;
extra_endfig := extra_endfig & "navPDFlogos;";
% gs will need this
prologues:=2;
%fond d'écran
noslides := 11;
def doback =
background := image(drawgradient((charcode/noslides)[white,white], (charcode/noslides)[white,white]););
enddef;
doback;
%cadre
path cadre;
cadre=(0.05lawidth,0.9laheight)--(0.95lawidth,0.9laheight)--(0.95lawidth,0.98laheight)--(0.05lawidth,0.98laheight)--cycle;
draw cadre;
%% -- instructions
color C[];
C6=0.8white;
vardef instruction(expr s) =
  fill cadre withcolor C6;
  label.rt(s,p100);
enddef;
%Couleurs
color aubergine,beige; 
aubergine = 3(37/256,2/256,29/256); 
beige     = (0.77734375,0.67578125,0.4921875);
C0 = (.5,1,1);
C1 = (.9,.4,.5);
C2 = 0.2[C0,C1];
C3 = 0.2[C1,C0];
C4 = 0.3[red,green];
C5=(.5,1,.25);
%[Points]
pair p[],h[],k[];
unit=1cm;
p0=(0.5lawidth,0.5laheight);%O
p1=(0.6lawidth,0.5laheight);%A
for i:=2 upto 5 :
  p[i]=(p[i-1]-p0) rotated 72 shifted p0;
endfor
h1=orthocentre(p1,p2,p3);
h2=orthocentre(p2,p3,p4);
h3=orthocentre(p3,p4,p5);
h4=orthocentre(p4,p5,p1);
h5=orthocentre(p5,p1,p2);
k1=droite(p1,p2) intersectionpoint droite(p3,p4);
k2=droite(p2,p3) intersectionpoint droite(p4,p5);
k3=droite(p3,p4) intersectionpoint droite(p5,p1);
k4=droite(p4,p5) intersectionpoint droite(p1,p2);
k5=droite(p5,p1) intersectionpoint droite(p2,p3);
p100=(0.07lawidth,0.94laheight);
%Animation
nextfig;
 label(btex \Large\bf Le Plaisir de la Géométrie etex scaled 2,(.502lawidth,.548laheight)) withcolor 0.3white;
 blabel(btex \Large\bf Le Plaisir de la Géométrie etex scaled 2,(.50lawidth,.55laheight));
 label(btex \Large\bf Fiche 310 etex scaled 2,(.502lawidth,.408laheight)) withcolor 0.3white;
 blabel(btex \Large\bf Fiche 310 etex scaled 2,(.5lawidth,.41laheight));
 hyperdest("start");
endfig;
discontinue;
nextfig;
instruction(btex 1. Trace un cercle de centre $O$ et de rayon $OA=4,5\,cm$. etex);
draw cercle(p0,abs(p0-p1)) dashed evenly;
dotlabel.ulft(btex $O$ etex,p0);
dotlabel.rt(btex $A$ etex,p1);
endfig;
continue;
nextfig;
instruction(btex 2. Place sur le cercle, les points $B$, $C$, $D$ et $E$ tels que $\widehat{AOB}=\widehat{BOC}=\widehat{COD}=\widehat{DOE}=72$° etex);
draw p1--p0--p2;
draw codeang(p1,p0,p2,0.9);
labeloffset:=8pt;
label.urt(btex 72° etex,p0);
labeloffset:=3bp;
dotlabel.top(btex $B$ etex,p2);
endfig;
nextfig;
draw p0--p3;
dotlabel.top(btex $C$ etex,p3);
endfig;
nextfig;
draw p0--p4;
dotlabel.bot(btex $D$ etex,p4);
endfig;
nextfig;
draw p0--p5;
dotlabel.bot(btex $E$ etex,p5);
endfig;
discontinue;
nextfig;
instruction(btex 3. Construire les hauteurs du triangle $ABC$ : elles se coupent en $H_1$ etex);
draw cercle(p0,abs(p0-p1)) dashed evenly;
dotlabel.ulft(btex $O$ etex,p0);
dotlabel.rt(btex $A$ etex,p1);
dotlabel.top(btex $B$ etex,p2);
dotlabel.top(btex $C$ etex,p3);
dotlabel.bot(btex $D$ etex,p4);
dotlabel.bot(btex $E$ etex,p5);
draw droite(p1,p2);
draw droite(p1,p3);
draw droite(p3,p2);
draw perp(h1,p1,p2);
endfig;
nextfig;
draw perp(h1,p2,p3);
endfig;
nextfig;
draw perp(h1,p3,p1);
dotlabel.top(btex $H_1$ etex,h1);
endfig;
discontinue;
nextfig;
instruction(btex 4. Construis les hauteurs du triangle $BCD$ : elles se coupent en $H_2$ etex);
draw cercle(p0,abs(p0-p1)) dashed evenly;
dotlabel.ulft(btex $O$ etex,p0);
dotlabel.rt(btex $A$ etex,p1);
dotlabel.top(btex $B$ etex,p2);
dotlabel.top(btex $C$ etex,p3);
dotlabel.bot(btex $D$ etex,p4);
dotlabel.bot(btex $E$ etex,p5);
dotlabel.top(btex $H_1$ etex,h1);
draw droite(p3,p2);
draw droite(p4,p2);
draw droite(p4,p3);
draw perp(h2,p2,p3);
draw perp(h2,p3,p4);
draw perp(h2,p4,p2);
dotlabel.top(btex $H_2$ etex,h2);
endfig;
nextfig;
instruction(btex 4.1. Les droites $(AB)$ et $(CD)$ se coupent en $K_1$. etex);
draw droite(p1,p2) withcolor red;
dotlabel.top(btex $K_1$ etex,k1);
endfig;
discontinue;
nextfig;
instruction(btex 5. Construis les hauteurs du triangle $CDE$ : elles se coupent en $H_3$ etex);
draw cercle(p0,abs(p0-p1)) dashed evenly;
dotlabel.ulft(btex $O$ etex,p0);
dotlabel.rt(btex $A$ etex,p1);
dotlabel.top(btex $B$ etex,p2);
dotlabel.top(btex $C$ etex,p3);
dotlabel.top(btex $D$ etex,p4);
dotlabel.bot(btex $E$ etex,p5);
dotlabel.bot(btex $H_1$ etex,h1);
dotlabel.top(btex $H_2$ etex,h2);
dotlabel.top(btex $K_1$ etex,k1);
draw droite(p3,p4);
draw droite(p4,p5);
draw droite(p5,p3);
draw perp(h3,p3,p4);
draw perp(h3,p4,p5);
draw perp(h3,p5,p3);
dotlabel.bot(btex $H_3$ etex,h3);
endfig;
nextfig;
instruction(btex 5.1. Les droites $(BC)$ et $(DE)$ se coupent en $K_2$. etex);
draw droite(p3,p2) withcolor red;
dotlabel.top(btex $K_2$ etex,k2);
endfig;
discontinue;
nextfig;
instruction(btex 6. Construis les hauteurs du triangle $DEA$ : elles se coupent en $H_4$ etex);
draw cercle(p0,abs(p0-p1)) dashed evenly;
dotlabel.ulft(btex $O$ etex,p0);
dotlabel.rt(btex $A$ etex,p1);
dotlabel.top(btex $B$ etex,p2);
dotlabel.top(btex $C$ etex,p3);
dotlabel.bot(btex $D$ etex,p4);
dotlabel.bot(btex $E$ etex,p5);
dotlabel.top(btex $H_1$ etex,h1);
dotlabel.top(btex $H_2$ etex,h2);
dotlabel.bot(btex $H_3$ etex,h3);
dotlabel.top(btex $K_1$ etex,k1);
dotlabel.top(btex $K_2$ etex,k2);
draw droite(p5,p4);
draw droite(p1,p5);
draw droite(p4,p1);
draw perp(h4,p4,p5);
draw perp(h4,p5,p1);
draw perp(h4,p1,p4);
dotlabel.bot(btex $H_4$ etex,h4);
endfig;
nextfig;
instruction(btex 6.1. Les droites $(CD)$ et $(EA)$ se coupent en $K_3$. etex);
draw droite(p3,p4) withcolor red;
dotlabel.lrt(btex $K_3$ etex,k3);
endfig;
discontinue;
nextfig;
instruction(btex 7. Construis les hauteurs du triangle $EAB$ : elles se coupent en $H_5$ etex);
draw cercle(p0,abs(p0-p1)) dashed evenly;
dotlabel.ulft(btex $O$ etex,p0);
dotlabel.rt(btex $A$ etex,p1);
dotlabel.top(btex $B$ etex,p2);
dotlabel.top(btex $C$ etex,p3);
dotlabel.bot(btex $D$ etex,p4);
dotlabel.bot(btex $E$ etex,p5);
dotlabel.top(btex $H_1