The Gallery of Infinite Series

Jean-Gabriel LUQUE[†], Manuel LUQUE[†] February 11, 2008

^{*}Jean-Gabriel.Luque@univ-mlv.fr †manuel.luque27@gmail.com

1 Real polygons

There are the polytopes $2\{\frac{p}{q}\}2$ (with p and q in $\mathbb N$) in the notation of Coxeter. Use the command:

 $\verb|\psset{unit=1.5cm}\polygon[P=p,Q=q]|$

2	3	4
•		
5	5 2	6
7	$\frac{7}{2}$	$\frac{7}{3}$

2 Simplices

There are the real polytopes $2\{3\}2\cdots 2\{3\}2$ in dimension n (tetrahedron, pentatope, sextatope etc...) in the notation of Coxeter. Use the command:

\psset{unit=1.5cm}\Simplex[dimension=n]

3 The infinite series γ_n^p

It is an infinite series of polytopes with two parameters p and n. The parameter n is the dimension of the polytope. In the notation of Coxeter, its name reads $p\{4\}2\{3\}\dots\{3\}2$. In the case p=2, we recovers the family of the hypercubes. Use the command:

\gammapn[P=p,dimension=n]

4 The infinite series β_n^p

It is an infinite series of polytopes with two parameters p and n reciprocals of γ_n^p . The parameter n is the dimension of the polytope. In the notation of Coxeter, its name reads $2\{3\}2\{3\}\dots\{3\}2\{4\}p$. In the case p=2, we recovers the family of the 2^n -topes which generalizes the tetrahedron for higher dimension. Use the command:

\betapn[P=p,dimension=n]

5 The infinite series γ_2^p

It is a special case of the series γ_n^p for n=2. In this case, the polytopes are complex polygons. The projection used here is different than the projection used with gammapn. Use the command:

\gammaptwo[P=p]

6 The infinite series β_2^p

It is a special case of the series β_n^p for n=2. In this case, the polytopes are complex polygons. The projection used here is different than the projection used with betapn. Use the command:

\betaptwo[P=p]

References

[1] H. S. M. Coxeter, Regular Complex Polytopes, Second Edition, Cambridge University Press, 1991.