\documentclass[11pt]{article} \usepackage[latin1]{inputenc} \usepackage[LGR,T1]{fontenc} \usepackage[greek,frenchb]{babel} \parindent1pt \topmargin0pt\headsep0pt\headheight0pt\footskip0pt \usepackage[a4paper,margin=5mm]{geometry} \usepackage{amsmath,tabularx} \usepackage{color} \usepackage{textcomp,enumerate} \usepackage{fancybox} \usepackage{shadow} \usepackage{graphicx} \usepackage{ifthen} \usepackage{ulem} \usepackage{soul} \usepackage{multicol} \usepackage{picins} %---------------------------------------------------------------------------------- % Correction et barème vue ou cachée %---------------------------------------------------------------------------------- \newboolean{visible} \newcommand{\blanc}[1]{% \textcolor{red}{\ifthenelse{\boolean{visible}}{#1}{\uwave{\phantom{#1}}}}% } \newcommand{\blancns}[1]{% \textcolor{red}{\ifthenelse{\boolean{visible}}{#1}{ \phantom{\large #1}}}% } \newcommand{\barem}[1]{% \textcolor{green}{\ifthenelse{\boolean{visible}}{\textsf{#1}}{}}% } %----------------------------------------------------------------------------------- %------------------------------------------------ %redefinition des listes numérotées (copie de chris5.tex) %------------------------------------------------ \def\labelenumi{{\bf \theenumi °)}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %macro pour exercice numéro ... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcounter{numeroexo} \newcommand{\exo}{\par\noindent\stepcounter{numeroexo} \hspace{-.25cm}\Ovalbox{\textbf{Exercice \arabic{numeroexo}}}\;} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %macro pour le nombre de points et le titre de l'exercice %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\pts}[2]{\noindent \textcolor{red}{\textsl{(sur #1 points)}}\; %#1 pour le nombre de points \textcolor{blue}{\textsc{#2 }}} %#2 pour le titre de l'exo \pagestyle{empty} \definecolor{grisclair}{gray}{0.96} \begin{document} %------------------------------------------------------------------------------------------------------------------------------------------ %------------------------------------------------------------------------------------------------------------------------------------------ \setboolean{visible}{false} %Cacher la correction en mettant "false" pour la variable "visible" %------------------------------------------------------------------------------------------------------------------------------------------ %------------------------------------------------------------------------------------------------------------------------------------------ \begin{center} \ifthenelse{\boolean{visible}}{ \fcolorbox{red}{grisclair}{{\bf \strut \qquad Correction Addition de fractions \qquad \strut}}\par} {\fcolorbox{blue}{grisclair}{{\bf \strut \qquad Addition de fractions \qquad \strut}}\par} \end{center} %°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° \ifthenelse{\boolean{visible}}{}{\vspace*{-.2cm}} \uuline{\textbf{Ecris la fraction qui représente la partie coloriée de chaque figure :}} \ifthenelse{\boolean{visible}}{}{\vspace*{-.2cm}} \begin{multicols}{8} \includegraphics{additfractions.1} $$\dfrac{\blanc{7}}{\blanc{14}}\,ou\, \dfrac{\blanc{1}}{\blanc{2}}$$ \includegraphics{additfractions.2} $$\dfrac{\blanc{1}}{\blanc{3}}$$ \includegraphics{additfractions.3} $$\dfrac{\blanc{6}}{\blanc{9}}\,ou\, \dfrac{\blanc{2}}{\blanc{3}}$$ \includegraphics{additfractions.4} $$\dfrac{\blanc{4}}{\blanc{9}}$$ \includegraphics{additfractions.9} $$\dfrac{\blanc{8}}{\blanc{32}}\,ou\, \dfrac{\blanc{1}}{\blanc{4}}$$ \includegraphics{additfractions.6} $$\dfrac{\blanc{2}}{\blanc{8}}\,ou\, \dfrac{\blanc{1}}{\blanc{4}}$$ \includegraphics{additfractions.7} $$\dfrac{\blanc{4}}{\blanc{8}}\,ou\, \dfrac{\blanc{1}}{\blanc{2}}$$ \includegraphics{additfractions.8} $$\dfrac{\blanc{2}}{\blanc{4}}\,ou\, \dfrac{\blanc{1}}{\blanc{2}}$$ \end{multicols} \ifthenelse{\boolean{visible}}{}{\vspace*{-.3cm}} \textbf{Complète la règle :} \ifthenelse{\boolean{visible}}{}{\vspace*{-.2cm}} \begin{center} \shabox{\textit {La fraction coloriée d'une figure = $\dfrac{nombre\, de\, parties\, \blanc{colori\acute{e}es}}{nombre\, de\, parties\, \blanc{totales}}$\; si toutes les parties sont \blanc{égales.}}} \end{center} \uuline{\textbf{Effectue le coloriage correspondant aux fractions pour pouvoir trouver le résultat des opérations :}} \begin{multicols}{2} \begin{tabular}{>\centering m{2.5cm}@{+}>\centering m{2.5cm}@{= }m{2.5cm}} \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.11}}{\includegraphics{additfractions.10}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.12}}{\includegraphics{additfractions.10}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.13}}{\includegraphics{additfractions.10}} \\ $\dfrac{2}{4}$ & $\dfrac{1}{4}$ & $\dfrac{\blanc{2}+\blanc{1}}{\blanc{4}}=\dfrac{\blanc{3}}{\blanc{4}}$ \end{tabular} \begin{tabular}{>\centering m{2.5cm}@{+}>\centering m{2.5cm}@{= }m{2.5cm}} \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.15}}{\includegraphics{additfractions.14}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.16}}{\includegraphics{additfractions.14}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.17}}{\includegraphics{additfractions.14}} \\ $\dfrac{5}{16}$ & $\dfrac{7}{16}$ & $\dfrac{\blanc{5}+\blanc{7}}{\blanc{16}}=\dfrac{\blanc{12}}{\blanc{16}}$ \end{tabular} \vspace{.3cm} \begin{tabular}{>\centering m{2.5cm}@{+}>\centering m{2.5cm}@{= }m{2.5cm}} \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.19}}{\includegraphics{additfractions.18}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.20}}{\includegraphics{additfractions.18}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.21}}{\includegraphics{additfractions.18}} \\ $\dfrac{1}{8}$ & $\dfrac{4}{8}$ & $\dfrac{\blanc{1}+\blanc{4}}{\blanc{8}}=\dfrac{\blanc{5}}{\blanc{8}}$ \end{tabular} \begin{tabular}{>\centering m{2.5cm}@{+}>\centering m{2.5cm}@{= }m{2.5cm}} \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.24}}{\includegraphics{additfractions.22}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.23}}{\includegraphics{additfractions.22}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.25}}{\includegraphics{additfractions.22}} \\ $\dfrac{1}{5}$ & $\dfrac{2}{5}$ & $\dfrac{\blanc{1}+\blanc{2}}{\blanc{5}}=\dfrac{\blanc{3}}{\blanc{5}}$ \end{tabular} \end{multicols} \ifthenelse{\boolean{visible}}{}{\vspace*{-.2cm}} \textbf{Complète la règle :} \ifthenelse{\boolean{visible}}{}{\vspace*{-.2cm}} \begin{center} \shabox{\textit {Quand les dénominateurs sont \blanc{égaux}, on peut ajouter les \blanc{numérateurs}. On ne change pas les \blanc{dénominateurs}.} } \end{center} \begin{multicols}{2} \begin{tabular}{>\centering m{2.5cm}@{+}>\centering m{2.5cm}@{= }m{2.5cm}} \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.11}}{\includegraphics{additfractions.10}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.12}}{\includegraphics{additfractions.10}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.13}}{\includegraphics{additfractions.10}} \\ $\dfrac{1}{2}$ & $\dfrac{1}{4}$ & $\dfrac{\blanc{2}}{\blanc{4}}+\dfrac{1}{4}=\dfrac{\blanc{3}}{\blanc{4}}$ \end{tabular} \begin{tabular}{>\centering m{2.5cm}@{+}>\centering m{2.5cm}@{= }m{2.5cm}} \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.27}}{\includegraphics{additfractions.26}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.28}}{\includegraphics{additfractions.26}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.29}}{\includegraphics{additfractions.26}} \\ $\dfrac{1}{4}$ & $\dfrac{7}{20}$ & $\dfrac{\blanc{5}}{\blanc{20}}+\dfrac{7}{20}=\dfrac{\blanc{12}}{\blanc{20}}$ \end{tabular} \vspace{.4cm} \begin{tabular}{>\centering m{2.5cm}@{+}>\centering m{2.5cm}@{= }m{2.5cm}} \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.19}}{\includegraphics{additfractions.18}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.20}}{\includegraphics{additfractions.18}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.21}}{\includegraphics{additfractions.18}} \\ $\dfrac{1}{8}$ & $\dfrac{1}{2}$ & $\dfrac{1}{8}+\dfrac{\blanc{4}}{\blanc{8}}=\dfrac{\blanc{5}}{\blanc{8}}$ \end{tabular} \begin{tabular}{>\centering m{2.5cm}@{+}>\centering m{2.5cm}@{= }m{2.5cm}} \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.31}}{\includegraphics{additfractions.30}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.32}}{\includegraphics{additfractions.30}} & \ifthenelse{\boolean{visible}}{\includegraphics{additfractions.33}}{\includegraphics{additfractions.30}} \\ $\dfrac{1}{3}$ & $\dfrac{2}{9}$ & $\dfrac{\blanc{3}}{\blanc{9}}+\dfrac{2}{9}=\dfrac{\blanc{5}}{\blanc{9}}$ \end{tabular} \end{multicols} \ifthenelse{\boolean{visible}}{}{\vspace*{-.2cm}} \textbf{Complète la règle :} \ifthenelse{\boolean{visible}}{}{\vspace*{-.2cm}} \begin{center} \shabox{\parbox{17cm}{\textit {Quand les dénominateurs sont \blanc{différents}, on ne peut pas ajouter les \blanc{numérateurs}. On doit transformer les \blanc{dénominateurs} pour les rendre \blanc{égaux}, ensuite on peut \blanc{ajouter} les nouveaux numérateurs.}}} \end{center} \textbf{Calculer :} \\[.2cm] \begin{tabular}{p{6.5cm}|p{6.5cm}|p{6.5cm}} $\dfrac{1}{7}+\dfrac{3}{14}=\dfrac{\blanc{2}}{14}+\dfrac{3}{14}=\dfrac{\blanc{2}+\blanc{3}}{14}=\dfrac{\blanc{5}}{14}$ & $\dfrac{2}{5}+\dfrac{7}{30}=\dfrac{\blanc{12}}{\blanc{30}}+\dfrac{7}{30}=\dfrac{\blanc{12}+\blanc{7}}{30}=\dfrac{\blanc{19}}{30}$& $\dfrac{3}{8}+\dfrac{5}{64}=\dfrac{\blanc{16}}{\blanc{64}}+\dfrac{\blanc{5}}{\blanc{64}}=\dfrac{\blanc{16+5}}{\blanc{64}}=\dfrac{\blanc{21}}{\blanc{64}}$ \end{tabular} \end{document}