\documentclass[twocolumn,12pt]{article} \usepackage{fancybox} \usepackage{fancyhdr} \usepackage{color} \usepackage{graphicx} \parindent0pt \topmargin0pt\headsep0pt\headheight0pt\footskip0pt \usepackage[dvips,a4paper,landscape,margin=8mm]{geometry} \usepackage{amsmath,tabularx} \usepackage{array} \usepackage{pgf} \usepackage{xxcolor} \usepackage{textcomp,marvosym,latexsym} \usepackage[latin1]{inputenc} \usepackage[T1]{fontenc} \usepackage[greek,frenchb]{babel} \newcounter{numeroexo} \newcommand{\exo}{\par\noindent\stepcounter{numeroexo} \hspace{-.25cm}\Ovalbox{\textbf{Exercice \arabic{numeroexo}}}\quad} \newcommand{\pts}[2]{\noindent \textcolor{red}{\textsl{(sur #1 points)}}\quad \textcolor{blue}{\textsc{#2 }\\*[.1cm]}} \def\labelenumi{{\bf \theenumi ¡)}} \pagestyle{empty} %\DeclareGraphicsRule{*}{mps}{*}{} \addtolength{\columnsep}{5mm} \setlength{\columnseprule}{1pt} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} {\bf Nom : \hspace*{5cm} Prénom : \hfill{5$^{\textrm{e}}$\hspace*{2pc}}\par \vspace{6pt} \centerline{ \shadowbox{\Large{Devoir en classe}} } \vspace{6pt} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %exercice %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \exo\pts{9}{Priorité opératoire} \vspace{-6pt} \begin{enumerate} \item Souligne le calcul par lequel il faut commencer, puis effectue le calcul des expressions suivantes :\par \begin{tabular}{p{4,5cm}p{4,5cm}p{4,5cm}} $7\times(0,3\times10+7)$ & $12\times(54\div3-13)$ & $42-27+13$ \\ &&\\ &&\\ &&\\ \end{tabular} \item Transforme les expressions suivantes en utilisant le signe "$\div$" \\ \begin{tabular}{p{4.5cm}p{4.5cm}p{4.5cm}} \Large $\frac{43-12}{7}=$ & \Large $\frac{43}{12-7}=$ & $43-$ \Large $\frac{12}{7}=$\\ &&\\ \end{tabular} \item Calcule les expressions suivantes sachant que $a=7$, $b=9$ et $c=3$ \\ \begin{tabular}{p{4cm}p{4cm}p{4cm}} \large $10ab=$ & \large $4b-5a=$ & \large $4a-\frac{b}{c}=$\\ &&\\ \end{tabular} \end{enumerate} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %exercice suivant %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \exo\pts{3}{Comparaison} Sans effectuer les divisions, comparer en expliquant : \par \begin{tabular}{p{5cm}p{5cm}p{5cm}} \Large $\frac{5}{6} \cdots \frac{2}{3}$ & \Large $\frac{18}{17} \cdots \frac{8}{9}$ & \Large $\frac{15}{19} \cdots \frac{5}{6}$ \end{tabular} \\ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %exercice suivant %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \exo\pts{4}{Calcul fractionnaire} Calculer et donner le résultat sous la forme d'une fraction plus simple : \\ \begin{tabular}{b{8cm}b{8cm}} \Large $\frac{2}{5}+\frac{3}{5}=$ & \Large $\frac{6}{8}-\frac{1}{4}=$ \\ &\\ \Large $\frac{3}{2}\times\frac{3}{5}=$ & \Large $\frac{40}{28} \times\frac{7}{10}=$ \end{tabular} \\ \vspace{.3cm} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %exercice suivant %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \exo\pts{3}{Fractions} Dans les égalités suivantes, les signes $+$, $-$ et $\times$ ont été remplacés par des étoiles. Les retrouver. \\ \begin{tabular}{p{5cm}p{5cm}p{5cm}} \Large $\frac{3\star3}{2}\star\frac{1}{6}=\frac{14}{3}$ & \Large $\frac{3\star3}{2}\star\frac{1}{6}=\frac{17}{6}$ & \Large $\frac{3\star3}{2}\star\frac{1}{6}=\frac{1}{2}$\\ &&\\ &&\\ \end{tabular} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %exercice suivant %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \exo\pts{2}{Calcul prioritaire} Calculer puis simplifier : \\ {\Large $\frac54- \frac8{24} \times \frac6{16}=$} \vspace{.3cm} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %exercice suivant %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \exo\pts{4}{Calcul d'angles} Pour la figure ci-dessous, on précise que $(AB)$ est la médiatrice de [IJ] et que $\widehat{KIJ}=48$\degres.\\ $$\includegraphics[width=6cm]{devoirrevision5e.1}$$ \begin{enumerate} \item Complète les phrases suivantes :\\ $(AB)$ est la médiatrice de [IJ] donc B est le {\Large\phantom{milieu}} de $[IJ]$. De plus $(AB)$ est {\large\phantom{perpendiculaire}} à $[IJ]$. Comme $A$ appartient à la médiatrice de [IJ], il est à la {\large\phantom{même distance}} des points I et J. Donc IA = {\Large\phantom{IB}} . \item Quel est la nature du triangle $AIJ$? \item Calculer l'angle $\widehat{IAK}$. \end{enumerate} \vspace{1.5cm} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %exercice suivant %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \exo\pts{5}{Constructions} \vspace{-.5cm} \begin{enumerate} \item Construire un triangle $ABC$ rectangle en $A$ tel que $BC=10$~cm et $\widehat{ABC}=72$\degres. \item Calculer l'angle $\widehat{BCA}$.\vspace{1.5cm} \item Construire le cercle circonscrit au triangle $ABC$. \end{enumerate} \end{document}