Retour

index.tex

Télécharger le fichier Fichier PDF
\documentclass[a4paper,11pt]{article}
\usepackage{francois_meria}
\usepackage[dvips]{graphicx}
\usepackage[dvips]{epsfig}
\setlength{\parindent}{0mm}
    \lhead{\textsf{Collège Château Forbin} - \textit{Mathématiques} - \textsf{6\ieme}}
    \chead{}
    \rhead{\textit{Année} 2005/2006}
    \pagestyle{fancy}
  \renewcommand{\headrulewidth}{0.5pt}
%
\begin{document}
\begin{center}
\begin{tabularx}{\textwidth}{|X|}
\hline
 
\vskip 0.3cm
 
\begin{center}
   {\Large\textbf{Construction géométrique et symétrie - 1}}\\
\end{center}\\
\hline
\end{tabularx}
\end{center}
%
\vskip 1cm
 
\begin{enumerate}[(a)]
    \item
    \begin{multicols}{2}
        \begin{itemize}
            \item [$\circ$] Tracer au centre de la feuille un carré $ABCD$ de
            $6$~cm de côté ainsi que ses deux diagonales
            d'intersection $O$.
            \item [$\circ$] Construire les trois bissectrices du
            triangle $ABD$. elles se coupent en $I$.
            \item [$\circ$] Tracer le cercle de centre $I$ et de
            rayon $IO$. On obtient la figure 1.
        \end{itemize}
    \begin{center}
    \psset{unit=0.6cm}
        \pspicture(-0.5,-0.5)(6.5,6.5)
            \pstGeonode[PointSymbol=none,PosAngle={225,-45,45,135}](0,0){D}(6,0){C}(6,6){B}(0,6){A}
            \pstLineAB{A}{B}
            \pstLineAB{C}{B}
            \pstLineAB{A}{D}
            \pstLineAB{D}{C}
            \pstLineAB{A}{C}
            \pstLineAB{D}{B}
            \pstInterLL[PointSymbol=none,PosAngle=-90]{D}{B}{A}{C}{O}
            \pstBissectBAC[PointName=none,PointSymbol=none,linestyle=dotted]{A}{B}{D}{M}
            \pstBissectBAC[PointName=none,PointSymbol=none,linestyle=dotted,nodesepB=2.5]{B}{D}{A}{N}
            \pstInterLL[PointSymbol=+]{A}{C}{B}{M}{I}
            \pstCircleOA{I}{O}
            \put(2,-0.7){Figure 1}
        \endpspicture
    \end{center}
    \end{multicols}
    \item Compléter cette figure par symétrie par rapport à la
    droite $(BD)$, faire de même avec la nouvelle figure par
    rapport à la droite $(BC)$ et enfin par rapport à la droite
    $(DC)$.
    \item Colorier la figure avec deux couleurs différentes que l'on alternera afin d'obtenir la figure 2.
\end{enumerate}
 
\vskip 1cm
 
\begin{center}
    \psset{unit=1cm}
        \pspicture(0,-6)(12,6)
            \pstGeonode[PointSymbol=none,PointName=none](0,0){D}(6,0){C}(6,6){B}(0,6){A}
            \pstLineAB{A}{B}
            \pstLineAB{C}{B}
            \pstLineAB{A}{D}
            \pstLineAB{D}{C}
            \pstLineAB{A}{C}
            \pstLineAB{D}{B}
            \pstInterLL[PointSymbol=none,PosAngle=-90,PointName=none]{D}{B}{A}{C}{O}
            \pstBissectBAC[PointName=none,PointSymbol=none,linestyle=none]{A}{B}{D}{M}
            \pstBissectBAC[PointName=none,PointSymbol=none,linestyle=none]{B}{D}{A}{N}
            \pstInterLL[PointSymbol=none,PointName=none]{A}{C}{B}{M}{I}
            \pstCircleOA{I}{O}
            \pstOrtSym[PointSymbol=none,PointName=none]{D}{B}{I}{J}
            \pstCircleOA{J}{O}
            \pstOrtSym[PointName=none,PointSymbol=none]{B}{C}{D}{E}
            \pstOrtSym[PointName=none,PointSymbol=none]{B}{C}{A}{F}
            \pstOrtSym[PointName=none,PointSymbol=none]{B}{C}{I}{K}
            \pstOrtSym[PointName=none,PointSymbol=none]{B}{C}{J}{L}
            \pstOrtSym[PointName=none,PointSymbol=none]{B}{C}{O}{O'}
            \pstCircleOA{K}{O'}
            \pstCircleOA{L}{O'}
            \pstLineAB{B}{E}
            \pstLineAB{B}{F}
            \pstLineAB{E}{C}
            \pstLineAB{E}{F}
            \pstLineAB{C}{F}
            \pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{A}{Z}
            \pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{B}{Y}
            \pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{F}{X}
            \pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{J}{T}
            \pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{I}{Q}
            \pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{O}{P}
            \pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{O'}{S}
            \pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{L}{H}
            \pstOrtSym[PointName=none,PointSymbol=none]{D}{C}{K}{H'}
            \pstCircleOA{T}{P}
            \pstCircleOA{H}{S}
            \pstCircleOA{H'}{S}
            \pstCircleOA{Q}{P}
            \pstLineAB{D}{Z}
            \pstLineAB{C}{Y}
            \pstLineAB{E}{X}
            \pstLineAB{E}{F}
            \pstLineAB{C}{F}
            \pstLineAB{C}{X}
            \pstLineAB{Z}{X}
            \pstLineAB{C}{Z}
            \pstLineAB{D}{Y}
            \pstLineAB{Y}{E}
            \put(5.4,-6.7){Figure 2}
        \endpspicture
\end{center}
 
\newpage
\begin{center}
\begin{tabularx}{\textwidth}{|X|}
\hline
 
\vskip 0.3cm
 
\begin{center}
   {\Large\textbf{Construction géométrique et symétrie - 2}}\\
\end{center}\\
\hline
\end{tabularx}
\end{center}
 
\vskip 1cm
 
\begin{multicols}{2}
À partir de la figure 1 ci-contre, on veut obtenir la figure 2
puis la figure 3, uniquement à l'aide de la symétrie axiale.
\begin{center}
    \psset{unit=1cm}
        \pspicture(-2,-0.5)(5,2.2)
            \rput{25}{
            \pstGeonode[PointSymbol=none,PosAngle={-45,-45,-45,-45,-45,-45,90}](0,0){O}(1,0){I}(2,0){J}(3,0){K}(4,0){L}(5,0){M}(0,2){A}
            \pstSegmentMark[SegmentSymbol=pstslashh]{O}{I}
            \pstSegmentMark[SegmentSymbol=pstslashh]{I}{J}
            \pstSegmentMark[SegmentSymbol=pstslashh]{J}{K}
            \pstSegmentMark[SegmentSymbol=pstslashh]{K}{L}
            \pstSegmentMark[SegmentSymbol=pstslashh]{L}{M}
            \pstLineAB{A}{O}
            \pstLineAB{A}{I}
            \pstLineAB{A}{J}
            \pstLineAB{A}{K}
            \pstLineAB{A}{L}
            \pstLineAB{A}{M}
            }
            \put(2,0){Figure 1}
        \endpspicture
\end{center}
\end{multicols}
 
\begin{enumerate}[(a)]
    \item Reproduire la figure 1 en prenant $OA=2$~cm et
    $OI=1$~cm.
    \item Quels sont les axes de symétrie de la figure 2 ?
    Compléter la figure 1 afin d'obtenir la figure 2.
    \item Décrire avec précision les axes de symétrie de la figure
    3. Compléter la figure 2 pour obtenir la figure 3.
    \item Colorier la figure 3 à l'aide de deux couleurs en
    alternant les couleurs.
    \item Combien d'axes de symétrie possède la figure 3 ? Et la
    figure coloriée ?
\end{enumerate}
 
\begin{center}
    \psset{unit=1cm}
        \pspicture(-5,-3)(5,2.5)
          \rput{25}{
            \pstGeonode[PointSymbol=none,PosAngle={-40,-40,-40,-40,-40,-40,90}](0,0){O}(1,0){I}(2,0){J}(3,0){K}(4,0){L}(5,0){M}(0,2){A}            \pstLineAB{A}{O}
            \pstLineAB{A}{I}
            \pstLineAB{A}{J}
            \pstLineAB{A}{K}
            \pstLineAB{A}{L}
            \pstLineAB{A}{M}
            \pstLineAB{O}{M}
            \pstOrtSym[PointSymbol=none,PosAngle=-45]{O}{M}{A}{B}
            \pstLineAB{B}{O}
            \pstLineAB{B}{I}
            \pstLineAB{B}{J}
            \pstLineAB{B}{K}
            \pstLineAB{B}{L}
            \pstLineAB{B}{M}
            \pstLineAB{B}{M}
            \pstOrtSym[PointSymbol=none,PointName=none]{A}{B}{I}{I_1}
            \pstOrtSym[PointSymbol=none,PointName=none]{A}{B}{J}{J_1}
            \pstOrtSym[PointSymbol=none,PointName=none]{A}{B}{K}{K_1}
            \pstOrtSym[PointSymbol=none,PointName=none]{A}{B}{L}{L_1}
            \pstOrtSym[PointSymbol=none,PointName=none]{A}{B}{M}{M_1}
            \pstLineAB{O}{M_1}
            \pstLineAB{A}{I_1}
            \pstLineAB{A}{J_1}
            \pstLineAB{A}{K_1}
            \pstLineAB{A}{L_1}
            \pstLineAB{A}{M_1}
            \pstLineAB{B}{I_1}
            \pstLineAB{B}{J_1}
            \pstLineAB{B}{K_1}
            \pstLineAB{B}{L_1}
            \pstLineAB{B}{M_1}
        }
        \put(2,-2){Figure 2}
        \endpspicture
\end{center}
 
\begin{center}
    \psset{unit=1cm}
        \pspicture(-5,-5)(6,2.5)
        \rput{25}{
            \pstGeonode[PointSymbol=none,PointName=none](0,0){O}(1,0){I}(2,0){J}(3,0){K}(4,0){L}(5,0){M}(0,1.4){A}
            \pstLineAB{A}{O}
            \pstLineAB{A}{I}
            \pstLineAB{A}{J}
            \pstLineAB{A}{K}
            \pstLineAB{A}{L}
            \pstLineAB{A}{M}
            \pstLineAB{O}{M}
            \pstOrtSym[PointSymbol=none,PointName=none]{O}{M}{A}{B}
            \pstLineAB{B}{O}
            \pstLineAB{B}{I}
            \pstLineAB{B}{J}
            \pstLineAB{B}{K}
            \pstLineAB{B}{L}
            \pstLineAB{B}{M}
            \pstLineAB{B}{M}
            \pstOrtSym[PointSymbol=none,PointName=none]{A}{B}{I}{I_1}
            \pstOrtSym[PointSymbol=none,PointName=none]{A}{B}{J}{J_1}
            \pstOrtSym[PointSymbol=none,PointName=none]{A}{B}{K}{K_1}
            \pstOrtSym[PointSymbol=none,PointName=none]{A}{B}{L}{L_1}
            \pstOrtSym[PointSymbol=none,PointName=none]{A}{B}{M}{M_1}
            \pstLineAB{O}{M_1}
            \pstLineAB{A}{I_1}
            \pstLineAB{A}{J_1}
            \pstLineAB{A}{K_1}
            \pstLineAB{A}{L_1}
            \pstLineAB{A}{M_1}
            \pstLineAB{B}{I_1}
            \pstLineAB{B}{J_1}
            \pstLineAB{B}{K_1}
            \pstLineAB{B}{L_1}
            \pstLineAB{B}{M_1}
            \pstSymO[PointSymbol=none,PointName=none]{B}{A}{C}
            \pstSymO[PointSymbol=none,PointName=none]{B}{I_1}{I_2}
            \pstSymO[PointSymbol=none,PointName=none]{B}{J_1}{J_2}
            \pstSymO[PointSymbol=none,PointName=none]{B}{K_1}{K_2}
            \pstSymO[PointSymbol=none,PointName=none]{B}{L_1}{L_2}
            \pstSymO[PointSymbol=none,PointName=none]{B}{M_1}{M_2}
            \pstLineAB{B}{C}
            \pstLineAB{C}{I_2}
            \pstLineAB{C}{J_2}
            \pstLineAB{C}{K_2}
            \pstLineAB{C}{L_2}
            \pstLineAB{C}{M_2}
            \pstLineAB{B}{I_2}
            \pstLineAB{B}{J_2}
            \pstLineAB{B}{K_2}
            \pstLineAB{B}{L_2}
            \pstLineAB{B}{M_2}
            \pstOrtSym[PointSymbol=none,PointName=none]{B}{C}{I_2}{I_3}
            \pstOrtSym[PointSymbol=none,PointName=none]{B}{C}{J_2}{J_3}
            \pstOrtSym[PointSymbol=none,PointName=none]{B}{C}{K_2}{K_3}
            \pstOrtSym[PointSymbol=none,PointName=none]{B}{C}{L_2}{L_3}
            \pstOrtSym[PointSymbol=none,PointName=none]{B}{C}{M_2}{M_3}
            \pstLineAB{B}{I_3}
            \pstLineAB{B}{J_3}
            \pstLineAB{B}{K_3}
            \pstLineAB{B}{L_3}
            \pstLineAB{B}{M_3}
            \pstLineAB{C}{I_3}
            \pstLineAB{C}{J_3}
            \pstLineAB{C}{K_3}
            \pstLineAB{C}{L_3}
            \pstLineAB{C}{M_3}
            \pstLineAB{M_2}{M_3}
        }
        \put(3,-4){Figure 3}
        \endpspicture
\end{center}
 
\newpage
\begin{center}
\begin{tabularx}{\textwidth}{|X|}
\hline
 
\vskip 0.3cm
 
\begin{center}
   {\Large\textbf{Construction géométrique et symétrie - 3}}\\
\end{center}\\
\hline
\end{tabularx}
\end{center}
 
\vskip 1cm
 
\begin{enumerate}[1.]
\begin{multicols}{2}
    \item
        \begin{enumerate}[(a)]
            \item Tracer un carré $ABCD$ de $15$~cm de côté et ses quatre axes de symétrie.
            Appeler $O$ leur point d'intersection.
            \item Placer le point $I$, milieu du segment $[AB]$ et
            le point $J$, milieu du segment $[BC]$.
            \item Construire les bissectrices des angles $\widehat{OAD}$, $\widehat{OAB}$,
            $\widehat{IOB}$ et $\widehat{JOB}$.
            \item Compléter la construction pour obtenir la figure 1.
        \end{enumerate}
 
    \begin{center}
    \psset{unit=0.4cm}
        \pspicture(15,15)
            \pstGeonode[PointSymbol=none,PosAngle={235,-45,45,135,0,90}](0,0){D}(15,0){C}(15,15){B}(0,15){A}(15,7.5){J}(7.5,15){I}
            \pspolygon(A)(B)(C)(D)
            \pstInterLL[PointSymbol=none,PosAngle=-118]{A}{C}{B}{D}{O}
            \psline(A)(C)
            \psline(B)(D)
            \pstGeonode[PointSymbol=none,PointName=none](7.5,0){I_1}(0,7.5){J_1}
            \psline(J)(J_1)
            \psline(I)(I_1)
            \pstBissectBAC[linestyle=none,PointSymbol=none,PointName=none]{D}{A}{O}{M_1}%
            \pstInterLL[PointName=none,PointSymbol=none]{A}{M_1}{J}{O}{T_1}%
            \psline(A)(T_1)
            \pstBissectBAC[linestyle=none,PointSymbol=none,PointName=none]{O}{A}{B}{M_2}%
            \pstInterLL[PointName=none,PointSymbol=none]{A}{M_2}{I}{O}{T_2}%
            \psline(A)(T_2)
            \psline(T_1)(T_2)
            \pstMarkAngle[MarkAngleRadius=1.2]{T_1}{A}{O}{}
            \pstMarkAngle[MarkAngleRadius=1.4]{T_1}{A}{O}{}
            \pstMarkAngle[MarkAngleRadius=1.4]{O}{A}{T_2}{}
            \pstMarkAngle[MarkAngleRadius=1.6]{O}{A}{T_2}{}
            \pstBissectBAC[linestyle=none,PointSymbol=none,PointName=none]{B}{O}{I}{N_1}%
            \pstInterLL[PointName=none,PointSymbol=none]{O}{N_1}{I}{B}{P_1}%
            \psline(O)(P_1)
            \pstBissectBAC[linestyle=none,PointSymbol=none,PointName=none]{J}{O}{B}{N_2}%
            \pstInterLL[PointName=none,PointSymbol=none]{O}{N_2}{J}{B}{P_2}%
            \psline(O)(P_2)
            \psline(P_1)(P_2)
            \pstMarkAngle[MarkAngleRadius=1.2]{B}{O}{P_1}{}
            \pstMarkAngle[MarkAngleRadius=1.4]{B}{O}{P_1}{}
            \pstMarkAngle[MarkAngleRadius=1.4]{P_2}{O}{B}{}
            \pstMarkAngle[MarkAngleRadius=1.6]{P_2}{O}{B}{}
            \put(6.2,-1){Figure 1}
        \endpspicture
\end{center}
\end{multicols}
    \item
        \begin{enumerate}[(a)]
            \item Compléter la figure 1 par symétrie par rapport aux
            deux diagonales du carré $ABCD$.
            \item Colorier la figure 2 à l'aide de deux couleurs
            que l'on alternera.
        \end{enumerate}
\end{enumerate}
 
\begin{center}
    \psset{unit=1cm}
        \pspicture(15,15)
            \pstGeonode[PointSymbol=none,PointName=none,PosAngle={235,-45,45,135,0,90}](0,0){D}(15,0){C}(15,15){B}(0,15){A}(15,7.5){J}(7.5,15){I}
            \pspolygon(A)(B)(C)(D)
            \pstInterLL[PointSymbol=none,PointName=none,PosAngle=50]{A}{C}{B}{D}{O}
            \psline(A)(C)
            \psline(B)(D)
            \pstGeonode[PointSymbol=none,PointName=none](7.5,0){I_1}(0,7.5){J_1}
            \psline(J)(J_1)
            \psline(I)(I_1)
            \pstBissectBAC[linestyle=none,PointSymbol=none,PointName=none]{D}{A}{O}{M_1}%
            \pstInterLL[PointName=none,PointSymbol=none]{A}{M_1}{J}{O}{T_1}%
            \psline(A)(T_1)
            \pstBissectBAC[linestyle=none,PointSymbol=none,PointName=none]{O}{A}{B}{M_2}%
            \pstInterLL[PointName=none,PointSymbol=none]{A}{M_2}{I}{O}{T_2}%
            \psline(A)(T_2)
            \psline(T_1)(T_2)
            \pstBissectBAC[linestyle=none,PointSymbol=none,PointName=none]{B}{O}{I}{N_1}%
            \pstInterLL[PointName=none,PointSymbol=none]{O}{N_1}{I}{B}{P_1}%
            \psline(O)(P_1)
            \pstBissectBAC[linestyle=none,PointSymbol=none,PointName=none]{J}{O}{B}{N_2}%
            \pstInterLL[PointName=none,PointSymbol=none]{O}{N_2}{J}{B}{P_2}%
            \psline(O)(P_2)
            \psline(P_1)(P_2)
            \pstOrtSym[PointName=none,PointSymbol=none]{B}{D}{T_1}{Q_1}
            \pstOrtSym[PointName=none,PointSymbol=none]{B}{D}{T_2}{Q_2}
            \pspolygon(Q_1)(Q_2)(C)
            \pstOrtSym[PointName=none,PointSymbol=none]{A}{C}{P_1}{R_1}
            \pstOrtSym[PointName=none,PointSymbol=none]{A}{C}{P_2}{R_2}
            \pspolygon(R_1)(R_2)(O)
            \pstInterLL[PointName=none,PointSymbol=none]{T_1}{T_2}{O}{A}{S}
            \pspolygon[fillstyle=solid,fillcolor=lightgray](A)(T_2)(S)
            \pspolygon[fillstyle=solid,fillcolor=lightgray](O)(T_1)(S)
            \pspolygon[fillstyle=solid,fillcolor=lightgray](A)(J_1)(T_1)
            \pstInterLL[PointName=none,PointSymbol=none]{P_1}{P_2}{O}{B}{S_1}
            \pspolygon[fillstyle=solid,fillcolor=lightgray](O)(P_1)(I)
            \pspolygon[fillstyle=solid,fillcolor=lightgray](O)(S_1)(P_2)
            \pspolygon[fillstyle=solid,fillcolor=lightgray](P_1)(S_1)(B)
            \pstInterLL[PointName=none,PointSymbol=none]{R_1}{R_2}{O}{D}{U}
            \pspolygon[fillstyle=solid,fillcolor=lightgray](O)(R_1)(U)
            \pspolygon[fillstyle=solid,fillcolor=lightgray](D)(U)(R_2)
            \pspolygon[fillstyle=solid,fillcolor=lightgray](R_2)(O)(I_1)
            \pstInterLL[PointName=none,PointSymbol=none]{Q_1}{Q_2}{O}{C}{U_1}
            \pspolygon[fillstyle=solid,fillcolor=lightgray](Q_1)(U_1)(C)
            \pspolygon[fillstyle=solid,fillcolor=lightgray](O)(U_1)(Q_2)
            \pspolygon[fillstyle=solid,fillcolor=lightgray](Q_2)(J)(C)
            \put(6.7,-0.7){Figure 2}
        \endpspicture
\end{center}
\end{document}