Les fonctions et constantes mathématiques reconnues sont~: \syntaxe \longref {$a$ $b$} {add} {$c$} {$c = a + c$} \longref {$a$ $b$} {sub} {$c$} {$c = a - c$} \longref {$a$ $b$} {mul} {$c$} {$c = a\times b$} \longref {$a$ $b$} {div} {$c$} {$c = a/b$} \longref {$a$ $b$} {idiv} {$q$} {$q$ est le quotient de la division euclidienne de $a$ par $b$} \longref {$a$ $b$} {mod} {$r$} {$r$ est reste de la division euclidienne de $a$ par $b$} \longref {$a$} {sin} {$c$} {$c = \sin a$ ($a$ en degré)} \longref {$a$} {cos} {$c$} {$c = \cos a$ ($a$ en degré)} \longref {$a$} {tan} {$c$} {$c = \tan a$ ($a$ en degré)} \longref {$a$} {cotan} {$c$} {$c = \cotan a$ ($a$ en degré)} \longref {$a$} {arccos} {$c$} {$c = \arccos a$ (en degrés)} \longref {$a$} {arcsin} {$c$} {$c = \arcsin a$ (en degrés)} \longref {$a$} {arctan} {$c$} {$c = \arctan a$ (en degrés)} \longref {$a$} {Sin} {$c$} {$c = \sin a$ ($a$ en radian)} \longref {$a$} {Cos} {$c$} {$c = \cos a$ ($a$ en radian)} \longref {$a$} {Tan} {$c$} {$c = \tan a$ ($a$ en radian)} \longref {$a$} {coTan} {$c$} {$c = \cotan a$ ($a$ en radian)} \longref {$a$} {Arccos} {$c$} {$c = \arccos a$ (en radians)} \longref {$a$} {Arcsin} {$c$} {$c = \arcsin a$ (en radians)} \longref {$a$} {Arctan} {$c$} {$c = \arctan a$ (en radians)} \longref {$a$} {sinh} {$c$} {$c = \sh a$} \longref {$a$} {cosh} {$c$} {$c = \ch a$ } \longref {$a$} {tanh} {$c$} {$c = \th a$} \longref {$a$} {cotanh} {$c$} {$c = \coth a$} \longref {$a$} {Exp} {$c$} {$c = \exp (a) = e^a$} \longref {$a$} {ln} {$c$} {$c = \ln a$} \longref {$a$} {log} {$c$} {$c = \log a$} \longref {$a$} {sqrt} {$c$} {$c = \sqrt a$} \longref {$a$ $n$} {exp} {$c$} {$c = a^n$} \longref {$a$} {abs} {$c$} {$c = |a|$} \longref {$a$} {neg} {$c$} {$c = -a$} \longref {$a$ $b$} {max} {$c$} {$c$ est le plus grand des deux nombres $a$ et $b$} \longref {$a$ $b$} {min} {$c$} {$c$ est le plus petit des deux nombres $a$ et $b$} \longref {$-$} {pi} {$3, 141\, 59$} {le nombre $\pi $} \longref {$-$} {e} {$2, 718$} {le nombre $e$} \longref {$num_1$} {ceiling} {$num_2$} {plafond de $num_1$} \longref {$num_1$} {floor} {$num_2$} {plancher de $num_1$} \longref {$num_1$} {round} {$num_2$} {arrondit $num_1$ à l'entier le plus proche} \longref {$num_1$} {truncate} {$num_2$} {enlève la partie fractionnaire de $num_1$} \longref {$-$} {rand} {$int$} {génère un entier au hasard} \longref {$n$} {factorielle} {$b$} {$b = a!$} \longref {$n$ $p$} {Anp} {$a$} {$a = A_n^p = n \times (n-1) \times \cdots \times (n - p + 1)$} \longref {$n$ $p$} {Cnp} {$c$} {$c = C_n^p = A_n^p/p!$} \longref {$k$ $n$ $p$} {binomiale} {$a$} {$a = C_n^k p^k (1-p)^{n-k}$} \longref {$x$ $\lambda $} {Poisson} {$y$} {$y$ est l'image de $x$ par la loi de Poisson de paramètre $\lambda$} \endsyntaxe