Retour

mathop.tex

Télécharger le fichier
Les fonctions et constantes mathématiques reconnues sont~: 
 
\syntaxe
\longref
   {$a$ $b$}
   {add}
   {$c$}
   {$c = a + c$}
 
\longref
   {$a$ $b$}
   {sub}
   {$c$}
   {$c = a - c$}
 
\longref
   {$a$ $b$}
   {mul}
   {$c$}
   {$c = a\times b$}
 
\longref
   {$a$ $b$}
   {div}
   {$c$}
   {$c = a/b$}
 
\longref
   {$a$ $b$}
   {idiv}
   {$q$}
   {$q$ est le quotient de la division euclidienne de $a$ par $b$}
 
\longref
   {$a$ $b$}
   {mod}
   {$r$}
   {$r$ est reste de la division euclidienne de $a$ par $b$}
 
\longref
   {$a$}
   {sin}
   {$c$}
   {$c = \sin a$ ($a$ en degré)}
 
\longref
   {$a$}
   {cos}
   {$c$}
   {$c = \cos a$ ($a$ en degré)}
 
\longref
   {$a$}
   {tan}
   {$c$}
   {$c = \tan a$ ($a$ en degré)}
 
\longref
   {$a$}
   {cotan}
   {$c$}
   {$c = \cotan a$ ($a$ en degré)}
 
\longref
   {$a$}
   {arccos}
   {$c$}
   {$c = \arccos a$ (en degrés)}
 
\longref
   {$a$}
   {arcsin}
   {$c$}
   {$c = \arcsin a$ (en degrés)}
 
\longref
   {$a$}
   {arctan}
   {$c$}
   {$c = \arctan a$ (en degrés)}
 
\longref
   {$a$}
   {Sin}
   {$c$}
   {$c = \sin a$ ($a$ en radian)}
 
\longref
   {$a$}
   {Cos}
   {$c$}
   {$c = \cos a$ ($a$ en radian)}
 
\longref
   {$a$}
   {Tan}
   {$c$}
   {$c = \tan a$ ($a$ en radian)}
 
\longref
   {$a$}
   {coTan}
   {$c$}
   {$c = \cotan a$ ($a$ en radian)}
 
\longref
   {$a$}
   {Arccos}
   {$c$}
   {$c = \arccos a$ (en radians)}
 
\longref
   {$a$}
   {Arcsin}
   {$c$}
   {$c = \arcsin a$ (en radians)}
 
\longref
   {$a$}
   {Arctan}
   {$c$}
   {$c = \arctan a$ (en radians)}
 
\longref
   {$a$}
   {sinh}
   {$c$}
   {$c = \sh a$}
 
\longref
   {$a$}
   {cosh}
   {$c$}
   {$c = \ch a$ }
 
\longref
   {$a$}
   {tanh}
   {$c$}
   {$c = \th a$}
 
\longref
   {$a$}
   {cotanh}
   {$c$}
   {$c = \coth a$}
 
\longref
   {$a$}
   {Exp}
   {$c$}
   {$c = \exp (a) = e^a$}
 
\longref
   {$a$}
   {ln}
   {$c$}
   {$c = \ln a$}
 
\longref
   {$a$}
   {log}
   {$c$}
   {$c = \log a$}
 
\longref
   {$a$}
   {sqrt}
   {$c$}
   {$c = \sqrt a$}
 
\longref
   {$a$ $n$}
   {exp}
   {$c$}
   {$c = a^n$}
 
\longref
   {$a$}
   {abs}
   {$c$}
   {$c = |a|$}
 
\longref
   {$a$}
   {neg}
   {$c$}
   {$c = -a$}
 
\longref
   {$a$ $b$}
   {max}
   {$c$}
   {$c$ est le plus grand des deux nombres $a$ et $b$}
 
\longref
   {$a$ $b$}
   {min}
   {$c$}
   {$c$ est le plus petit des deux nombres $a$ et $b$}
 
\longref
   {$-$}
   {pi}
   {$3, 141\, 59$}
   {le nombre $\pi $}
 
\longref
   {$-$}
   {e}
   {$2, 718$}
   {le nombre $e$}
 
\longref 
   {$num_1$}
   {ceiling}
   {$num_2$}
   {plafond de $num_1$}
 
\longref 
   {$num_1$}
   {floor}
   {$num_2$}
   {plancher de $num_1$}
 
\longref 
   {$num_1$}
   {round}
   {$num_2$}
   {arrondit $num_1$ à l'entier le plus proche}
 
\longref 
   {$num_1$}
   {truncate}
   {$num_2$}
   {enlève la partie fractionnaire de $num_1$}
 
\longref 
   {$-$}
   {rand}
   {$int$}
   {génère un entier au hasard}
 
\longref 
   {$n$}
   {factorielle}
   {$b$}
   {$b = a!$}
 
\longref 
   {$n$ $p$}
   {Anp}
   {$a$}
   {$a = A_n^p = n \times (n-1) \times \cdots \times (n - p + 1)$}
 
\longref 
   {$n$ $p$}
   {Cnp}
   {$c$}
   {$c = C_n^p = A_n^p/p!$}
 
\longref 
   {$k$ $n$ $p$}
   {binomiale}
   {$a$}
   {$a = C_n^k p^k (1-p)^{n-k}$}
 
\longref 
   {$x$ $\lambda $}
   {Poisson}
   {$y$}
   {$y$ est l'image de $x$ par la loi de Poisson de paramètre $\lambda$}
 
\endsyntaxe