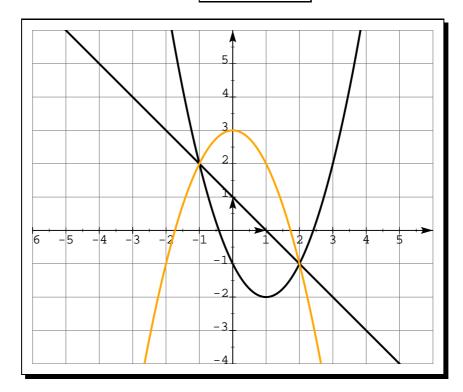
2L 10 avril 2003

Corrigé du devoir surveillé nº 10

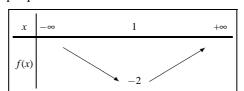
Exercice: Intersections de courbes, positions relatives

A 1. a) Graphiquement, l'équation f(x) = 0 admet 2 solutions : $x \approx -0, 4$ et $x \approx 2, 4$.

- b) Toujours graphiquement, on a $f(x) \le 2$ si et seulement si $x \in [-1, 3]$
- c) Pour finir, on a $-1 \le f(x) \le 2$ si et seulement si $x \in [-1; 0] \cup [2; 3]$
- **2.** *a*)



- b) Les solutions de l'équation $x^2 2x 1 = 1 x$ correspondent aux abscisses des points d'intersection des courbes de f et de g. On en déduit qu'il y a 2 solutions : -1 et 2.
- c) De la même façon, les solutions de l'inéquation $x^2 2x 1 \le 1 x$ correspondent aux abscisses des points de la courbe de f qui sont en-dessous de la courbe de g. On en déduit l'intervalle solution : [-1;2].
- 3. Le tableau de variation lu sur le graphique est le suivant :



B 1. Il vient

$$f(x) = -1 \iff x^2 - 2x = 0 \iff x(x-2) = 0$$

On a un produit de facteurs égal à zéro, ce qui permet d'en déduitr les 2 solutions : 0 et 2

2. Il vient

$$f(x) \geqslant -1 \iff x^2 - 2x \geqslant 0 \iff x(x-2) \geqslant 0.$$

Le tableau de signes s'impose, et il vient

<u>x</u>	-∞	0		2		+∞
x-2	_		-	0	+	
х	_	0	+		+	
produit	+	0	-	0	+	

2L 10 avril 2003

d'où la solution : $f(x) \ge -1$ si et seulement si $x \in]-\infty; 0] \cup [2; +\infty[$

- **3.** a) On vérifie facilement, en développant l'expression proposée, que $f(x) = (x-1)^2 2$
- b) On remarque alors que $2 = \sqrt{2}^2$, et il vient

$$f(x) = (x-1)^2 - 2 = (x-1)^2 - (\sqrt{2})^2$$
 d'où $f(x) = (x-1-\sqrt{2})(x-1+\sqrt{2})$.

L'expression f(x) étant maintenant factorisée, on en déduit facilement qu'elle est nulle si et seulement si $|x = 1 + \sqrt{2}$ ou $x = 1 - \sqrt{2}$

$$x = 1 + \sqrt{2}$$
 ou $x = 1 - \sqrt{2}$

|C| 1. La fonction h est paire puisque

$$h(-x) = 3 - (-x)^2 = 3 - x^2 = h(x)$$
.

On en déduit que la courbe C_h est symétrique par rapport à l'axe O_Y

2. a) Soit a et b deux nombres positifs rangés par ordre croissant. On a

$$0 \le a \le b \implies 0 \le a^2 \le b^2 \implies 0 \ge -a^2 \ge -b^2$$

$$\implies 3 \ge 3 - a^2 \ge 3 - b^2 \implies 3 \ge h(a) \ge h(b)$$

Ce qui prouve que la fonction h est décroissante sur $0; +\infty$

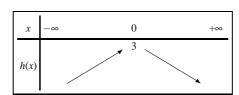
b) On remarque tout d'abord que h(0) = 3 donc le nombre 3 est atteint par la fonction h. Reste à montrer que l'on a $h(x) \leq 3$ pour tout x. Or

$$h(x) \le 3 \iff 3 - x^2 \le 3 \iff -x^2 \le 0 \iff x^2 \ge 0$$

et cette dernière égalité est vraie pour tout x réel puisque le carré d'un nombre réel est toujours positif ou nul. On a $h(x) \leq 3$ pour tout x

Les deux points précédents prouvent que 3 est le maximum de la fonction h sur \mathbb{R}

c) On sait d'après 2.a) que la fonction h est décroissante sur $[0; +\infty[$, et on sait d'après 1. que sa courbe représentative admet une symétrie par rapport à l'axe Oy. On en déduit alors le tableau de variation suivant :



3. À la calculatrice, on trouve

х	-3	-2	-3/2	-1	0	1	3/2	2	3
h(x)	-6	-1	0,75	2	3	2	0,75	-1	-6

- **5.** a) On trouve $2(x+1)(x-2) = 2x^2 2x 4$. b) Chercher les coordonnées des points d'intersection des courbes C_f et C_h revient à résoudre le système

$$\begin{cases} y = f(x) \\ y = h(x) \end{cases} \iff \begin{cases} y = x^2 - 2x - 1 \\ y = 3 - x^2 \end{cases} \iff \begin{cases} 3 - x^2 = x^2 - 2x - 1 \\ y = 3 - x^2 \end{cases}$$
$$\iff \begin{cases} 0 = 2x^2 - 2x - 4 \\ y = 3 - x^2 \end{cases} \iff \begin{cases} 0 = 2(x+1)(x-2) \\ y = 3 - x^2 \end{cases} \iff \begin{cases} x = -1 \text{ ou } x = 2 \\ y = 3 - x^2 \end{cases}$$

D'où les 2 points d'intersection : (x, y) = (-1, 2) et (x, y) = (2, -1).