Géométrie analytique

Exercice 1 : Géométrie analytique

Dans le plan rapporté à un repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$ (unité : 1 cm ou 1 grand carreau), on considère les points A(-2,2), B(2,4) et C(1,1).

- 1. Placer les points A, B et C.
- **2.** On considère la droite T d'équation y = 3x 2.
 - a) Représenter la droite T sur le dessin précédent.
 - b) Montrer que le point C est sur la droite T.
- 3. Calculer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} .
- **4.** Calculer les distances AB, AC et BC.
- **5.** a) Déterminer une équation cartésienne de la droite (AC).
 - b) Quel est le coefficient directeur de la droite (BC) ?
- **6.** Que peut-on dire du triangle *ABC* ?

Exercice 2 : Vecteurs, longueurs, équations de droites

Le plan est rapporté à un repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$ d'unité 1 cm (ou 1 grand carreau si vous préférez).

1. On donne les points

$$A(-2,4),$$
 $B(4,2),$ $C(-4,-2).$

- a) Placer les points A, B et C.
- b) Calculer les coordonnées de \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} .
- c) Calculer les longueurs AB, AC et BC.
- d) Que peut-on dire du triangle ABC?
- e) Calculer l'aire du triangle ABC.
- 2. a) Soit d_1 la droite d'équation x 2y = 0. Quel est le coefficient directeur de d_1 ? Construire d_1 sur la figure précédente.
 - b) Soit d_2 la droite d'équation $y = -\frac{1}{3}x + \frac{10}{3}$. Quel est le coefficient directeur de d_2 ? Construire d_2 sur la figure précédente.
 - c) Les droites d_1 et d_2 ont-elles un point commun ? Préciser.
 - d) Établir une équation cartésienne de d_3 , la droite passant par les points A et C. Dire pourquoi les droites d_2 et d_3 sont perpendiculaires. Retrouver le résultat de la question 1. d).
- 3. a) Donner une équation de la droite (AO), notée d_4 . Pourquoi peut-on affirmer que d_4 est perpendiculaire à d_1 ?
 - b) Soit D(2, -4). Prouver que $D \in d_4$.
 - c) Quelle est la nature du quadrilatère ABCD? Donner son aire.

Produit scalaire

Exercice 3 : Calculs de produits scalaires sous forme cartésienne

Dans le plan rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) , on considère les vecteurs

$$\vec{u} \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \quad \vec{v} \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \quad \vec{w} \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- a) Calculer $\vec{u} \cdot \vec{v}$ et $\vec{v} \cdot \vec{u}$.
- b) Calculer $\vec{u} \cdot (\vec{v} + \vec{w})$ et $\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.
- c) Calculer $\vec{u} \cdot \vec{0}$.
- d) Calculer $\vec{u} \cdot (3\vec{v})$ et $(3\vec{u}) \cdot \vec{v}$.

Remarque – Les propriétés observées ci-dessus sont généralisables à un triplet quelconque de trois vecteurs $(\vec{u}, \vec{v}, \vec{w})$.