Devoir surveillé nº 5

durée: 1h

Exercice : Production industrielle et contrôle de qualité

Les quatres questions de cet exercice sont indépendantes.

Une entreprise de matériel pour l'industrie produit des modules constitués de deux types de pièces : P₁ et P₂.

1. Une pièce P_1 est considérée comme bonne si sa longueur, en centimètres, est comprise entre 293, 5 et 306, 5.

On note L la variable aléatoire qui, à chaque pièce P_1 choisie au hasard dans la production d'une journée, associe sa longueur.

On suppose que *L* suit une loi normale de moyenne 300 et d'écart type 3.

Déterminer, à 10^{-2} près, la probabilité qu'une pièce P_1 soit bonne.

2. On note A l'événement : « une pièce P_1 choisie au hasard dans la production des pièces P_1 est défectueuse ».

On note de même B l'événement : « une pièce P_2 choisie au hasard dans la production des pièces P_2 est défectueuse ».

On admet que les probabilités des deux événements A et B sont p(A) = 0,03 et p(B) = 0,07 et on suppose que ces deux événements sont indépendants.

Un module étant choisi au hasard dans la production, calculer, à 10^{-4} près, la probabilité de chacun des événements suivants :

 E_1 : « les deux pièces du module sont défectueuses » ;

 E_2 : « au moins une des deux pièces du module est défectueuses » ;

 E_3 : « aucune des deux pièces constituant le module n'est défectueuse » ;

3. Dans un important stock de ces modules, on prélève au hasard 10 modules pour vérification. Le stock est assez important pour qu'on puisse assimiler ce prélèvement à un tirage avec remise de 10 modules.

On considère la variable aléatoire X qui, à tout prélèvement de 10 modules associe le nombre de modules réalisant l'événement E_3 défini au **2.**

On suppose que la probabilité de l'événement E_3 est 0, 902.

- a) Expliquer pourquoi X suit une loi binômiale ; déterminer les paramètres de cette loi.
- b) Calculer, à 10^{-3} près, la probabilité que, dans un tel prélèvement, 9 modules au moins réalisent l'événement E_3 .
- **4.** Dans cette question on s'intéresse au diamètre des pièces P_2 .

Soit \overline{X} la variable aléatoire qui, à tout échantillon de 60 pièces P_2 prélevées au hasard et avec remise dans la production de la journée considérée, associe la moyenne des diamètres des pièces de cet échantillon. On suppose que \overline{X} suit la loi normale :

de moyenne inconnue
$$\mu$$
 et d'écart type $\frac{\sigma}{\sqrt{60}}$ avec $\sigma = 0,084$.

On mesure le diamètre, exprimé en centimètres, de chacune des 60 pièces P_2 d'un échantillon choisi au hasard et avec remise dans la production d'une journée.

On constate que la valeur approchée arrondie à 10^{-3} près de la moyenne \overline{x} de cet échantillon est $\overline{x} = 4,012$.

- a) À partir des informations portant sur cet échantillon, donner une estimation ponctuelle, à 10^{-3} près, de la moyenne μ des diamètres des pièces P_2 produites pendant cette journée.
- b) Déterminer un intervalle de confiance centré en \overline{x} de la moyenne μ des diamètres des pièces P_2 produites pendant la journée considérée, avec le coefficient de confiance de 95%.
- c) On considère l'affirmation suivante : « la moyenne μ est obligatoirement entre 3,991 et 4,033 ».

Peut-on déduire de ce qui précède qu'elle est vraie ?