Retour

sym_plan.tex

Télécharger le fichier Fichier PDF
\documentclass{article}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{pst-solides3d}
\usepackage[a4paper,dvips]{geometry}
\pstheader{rhombicuboctahedron.pro}
\begin{document}
\begin{center}
\psset{unit=0.75}
\begin{pspicture}(-6,-6)(6,7)
\psset{SphericalCoor=true,viewpoint=50 20 60,Decran=100,args={[0 1 -1 0]}}%
\pstVerb{
%%%%% ### SymPlan ###
%% symétrie / plan ax+by+cz+d=0
/SymPlan {
12 dict begin
   /z exch def
   /y exch def
   /x exch def
args aload pop
/d1 exch def
/c1 exch def
/b1 exch def
/a1 exch def
/n_U a1 dup mul b1 dup mul add c1 dup mul add sqrt def
/a a1 n_U div def
/b b1 n_U div def
/c c1 n_U div def
/d d1 n_U div def
/u a x mul b y mul add c z mul add d add def
x 2 a mul u mul sub
y 2 b mul u mul sub
z 2 c mul u mul sub
end
} def
/reverseliste {
/F_temp exch def
4 dict begin
/F1 [
0 1 F_temp length 1 sub {/j exch def
/T F_temp j get def
[T length 1 sub -1 0 {
    /i exch def
     T i get}
   for
  ]
  } for
 ] def
/F F1 def
end}
 def
}%
\codejps{
/PerBU {%
1 0.55409 rhombicuboctahedron
} def
/PerBU2 { PerBU  {0 0 3 translatepoint3d} solidtransform
                 {SymPlan} solidtransform
       } def
/PerBUSym {
                 /F PerBU2 solidgetfaces def
                  F reverseliste
                 /S PerBU2 solidgetsommets def
                  S F generesolid
                  dup [0 1]  solidputhuecolors
                 }
def
/PerBUinitial {
PerBU  dup [0 1] solidputhuecolors {0 0 3 translatepoint3d} solidtransform
} def
PerBUinitial
PerBUSym
solidfuz
drawsolid**
2 newcube {0 0 3 translatepoint3d} solidtransform
drawsolid
/Cube2 { 2 newcube {0 0 3 translatepoint3d} solidtransform
          {SymPlan} solidtransform
} def
/SymCube {
                 /F Cube2 solidgetfaces def
                  F reverseliste
                 /S Cube2 solidgetsommets def
                  S F generesolid
                 }
def
SymCube drawsolid
}
\psSolid[object=plan,linecolor=red,
   definition=equation,
   args={[0 1 -1 0]},
   base=-3 3 -4 4,
   ngrid=1. 1.,action=draw
]
\axesIIID(0,0,0)(3,2,2)
%\rput{45}{\psgrid}
\end{pspicture}
\end{center}
Équation du plan : $\mathrm{a}x+\mathrm{b}y+\mathrm{c}z+\mathrm{d}=0$
 
Vecteur normal au plan : $\overrightarrow{n}(\mathrm{a},\mathrm{b},\mathrm{c})$
 
Un point $M(x,y,z)$ quelconque et son symétrique $M'(x',y',z')$ (orthogonalement) par rapport au plan.
 
$\overrightarrow{MM'}$ et $\overrightarrow{n}$ sont colinéaires :
 
\[
\frac{x'-x}{\mathrm{a}}=\frac{y'-y}{\mathrm{b}}=\frac{z'-z}{\mathrm{c}}=k
\]
Le milieu $I$ de $[MM']$ appartient au plan :
\[
\mathrm{a}(x+x')+\mathrm{b}(y+y')+c(z+z')+2d=0
\]
En posant $E=\mathrm{a}x+\mathrm{b}y+\mathrm{c}z+\mathrm{d}$, après calculs on obtient :
\[
\left\{
\begin{array}{rcl}
x'&=&x-\frac{2\mathrm{a}E}{\mathrm{a}^2+\mathrm{b}^2+c^2}\\[0.2cm]
y'&=&y-\frac{2\mathrm{b}E}{\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2}\\[0.2cm]
z'&=&z-\frac{2\mathrm{c}E}{a^2+\mathrm{b}^2+\mathrm{c}^2}
\end{array}
\right.
\]
\end{document}