\documentclass{article} \usepackage[latin1]{inputenc} \usepackage[T1]{fontenc} \usepackage{pst-solides3d} \usepackage[a4paper,dvips]{geometry} \pstheader{rhombicuboctahedron.pro} \begin{document} \begin{center} \psset{unit=0.75} \begin{pspicture}(-6,-6)(6,7) \psset{SphericalCoor=true,viewpoint=50 20 60,Decran=100,args={[0 1 -1 0]}}% \pstVerb{ %%%%% ### SymPlan ### %% symétrie / plan ax+by+cz+d=0 /SymPlan { 12 dict begin /z exch def /y exch def /x exch def args aload pop /d1 exch def /c1 exch def /b1 exch def /a1 exch def /n_U a1 dup mul b1 dup mul add c1 dup mul add sqrt def /a a1 n_U div def /b b1 n_U div def /c c1 n_U div def /d d1 n_U div def /u a x mul b y mul add c z mul add d add def x 2 a mul u mul sub y 2 b mul u mul sub z 2 c mul u mul sub end } def /reverseliste { /F_temp exch def 4 dict begin /F1 [ 0 1 F_temp length 1 sub {/j exch def /T F_temp j get def [T length 1 sub -1 0 { /i exch def T i get} for ] } for ] def /F F1 def end} def }% \codejps{ /PerBU {% 1 0.55409 rhombicuboctahedron } def /PerBU2 { PerBU {0 0 3 translatepoint3d} solidtransform {SymPlan} solidtransform } def /PerBUSym { /F PerBU2 solidgetfaces def F reverseliste /S PerBU2 solidgetsommets def S F generesolid dup [0 1] solidputhuecolors } def /PerBUinitial { PerBU dup [0 1] solidputhuecolors {0 0 3 translatepoint3d} solidtransform } def PerBUinitial PerBUSym solidfuz drawsolid** 2 newcube {0 0 3 translatepoint3d} solidtransform drawsolid /Cube2 { 2 newcube {0 0 3 translatepoint3d} solidtransform {SymPlan} solidtransform } def /SymCube { /F Cube2 solidgetfaces def F reverseliste /S Cube2 solidgetsommets def S F generesolid } def SymCube drawsolid } \psSolid[object=plan,linecolor=red, definition=equation, args={[0 1 -1 0]}, base=-3 3 -4 4, ngrid=1. 1.,action=draw ] \axesIIID(0,0,0)(3,2,2) %\rput{45}{\psgrid} \end{pspicture} \end{center} Équation du plan : $\mathrm{a}x+\mathrm{b}y+\mathrm{c}z+\mathrm{d}=0$ Vecteur normal au plan : $\overrightarrow{n}(\mathrm{a},\mathrm{b},\mathrm{c})$ Un point $M(x,y,z)$ quelconque et son symétrique $M'(x',y',z')$ (orthogonalement) par rapport au plan. $\overrightarrow{MM'}$ et $\overrightarrow{n}$ sont colinéaires : \[ \frac{x'-x}{\mathrm{a}}=\frac{y'-y}{\mathrm{b}}=\frac{z'-z}{\mathrm{c}}=k \] Le milieu $I$ de $[MM']$ appartient au plan : \[ \mathrm{a}(x+x')+\mathrm{b}(y+y')+c(z+z')+2d=0 \] En posant $E=\mathrm{a}x+\mathrm{b}y+\mathrm{c}z+\mathrm{d}$, après calculs on obtient : \[ \left\{ \begin{array}{rcl} x'&=&x-\frac{2\mathrm{a}E}{\mathrm{a}^2+\mathrm{b}^2+c^2}\\[0.2cm] y'&=&y-\frac{2\mathrm{b}E}{\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2}\\[0.2cm] z'&=&z-\frac{2\mathrm{c}E}{a^2+\mathrm{b}^2+\mathrm{c}^2} \end{array} \right. \] \end{document}