\documentclass[a4paper]{article} \usepackage[latin1]{inputenc} \usepackage[T1]{fontenc} \usepackage[greek,frenchb]{babel} \usepackage{array,multicol,multirow,enumerate} \usepackage{graphicx} \usepackage{pstricks,pst-eucl} \usepackage{lscape} \usepackage{fancyhdr} \usepackage{amsmath,amsfonts,amsthm,geometry} \usepackage{frcursive} \usepackage{geometry} \geometry{ hmargin=1.5cm, vmargin=1.5cm } \setlength{\parindent}{0mm} % A virer ? \def\d{$\diamond \,$} % le symbole de multiplication \def\*{\times} % le symbole Euro \def\Euro{\textgreek{\euro}\ } % La fameuse \trou de Olivier K qui remplace un mot par un trou de la meme taille \def\m@th{\mathsurround=0pt} \def\trou#1{ \setbox0=\hbox{\textbf{#1}} \dp0=0pt \m@th \underline{\hbox{\hskip\wd0}} } % Elle ne set pas souvent mais j'en ai bavé ;o) \newcommand{\machine}[4]{ \begin{pspicture} \rput(0,0){\rnode{A}{#1}} \rput(3,0.11){\rnode{B}{#2}} \psset{nodesep=5pt} \ncarc[arcangleA=25,arcangleB=25]{->}{A}{B}\mput*{\ovalnode{m}{#3}} \ncarc[arcangleA=25,arcangleB=25]{->}{B}{A}\mput*{\ovalnode{d}{#4}} \end{pspicture} \hskip 3.1cm} % La fameuse \qcm de Nicolas Poulain qui permet de faire des qcm \newcommand{\QCM}[4]{ \begin{tabular}[t]{p{13cm}c} #1 & \psset{xunit=1 cm} \begin{pspicture}(-0.3,0)(1.5,0.5) \pspolygon(0,0)(1.5,0)(1.5,-.5)(0,-.5) \psline(.5,0)(.5,-.5) \psline(1,0)(1,-.5) \uput[90](0.25,0){A} \uput[90](0.75,0){B} \uput[90](1.25,0){C} \end{pspicture} \\ A: #2 \qquad B: #3 \qquad C: #4 & \\ \end{tabular}} % Ca peut toujours servir un petit carré ! (Merci Ahmed Kadi) \newcommand{\smallbox}{ \begin{pspicture}(.5,.5) \pspolygon(0,0)(.25,0)(.25,.25)(0,.25) \end{pspicture}} % Vec (Merci Ahmed Kadi) \renewcommand{\vec}[1] {\mathord{\setbox0\hbox{$#1$} \mathop{\smash{#1}\setbox1\copy0\ht1 0.8\ht0 \vphantom{\copy1}\mskip0.8\thinmuskip} \limits^{\hbox to\wd0{$\mskip0.8\thinmuskip$\rightarrowfill}}\mskip-0.8\thinmuskip}} % Exo \newcounter{nexo} \setcounter{nexo}{0} \newcommand{\exo}{ \stepcounter{nexo} {\textbf{$\triangleright$ Exercice \arabic{nexo} :}} } % Questions \newenvironment{questions}{\begin{enumerate}[1 $\, \diamond$]}{\end{enumerate}} \lhead{\textsf{Collège Chateau Forbin} - \textit{Mathématiques}} \chead{} \rhead{\textit{Année} 2005/2006} \pagestyle{fancy} \renewcommand{\headrulewidth}{0.5pt} \begin{document} {\noindent \textbf{NOM :} \hfill \textbf{Classe : \ldots}} \vskip 0.3cm {\noindent \textbf{Prénom :} \hfill \textit{lundi $21$ novembre $2005$}} %{\noindent \textbf{Prénom :} \psfig{figure=blason.eps,width=1.3cm}}%, height=10cm,width=6cm,width=18cm \begin{center} {\large\textbf{Atelier 5\ieme~ : \og Les nombres en écriture fractionnaire \fg}}\\ \small{\textit{À compléter sur ces feuilles}}\\ \end{center} \vskip 0.3cm \hrule\vspace{\baselineskip} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DEBUT DES EXERCICES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \exo \'Ecris les nombres suivants sous la forme d'une fraction de nombres entiers : $0,2$ ; $55,55$ ; $10,01$ ; $0,875$ ; $2,5$ et $5,89$. \begin{multicols}{2} \begin{questions} \item $0,2 =\frac{\ldots\ldots\ldots}{\ldots\ldots\ldots}$ \vskip 0.4cm \item $55,55 =\frac{\ldots\ldots\ldots}{\ldots\ldots\ldots}$ \vskip 0.4cm \item $10,01 =\frac{\ldots\ldots\ldots}{\ldots\ldots\ldots}$ \vskip 0.4cm \item $0,875 =\frac{\ldots\ldots\ldots}{\ldots\ldots\ldots}$ \vskip 0.4cm \item $2,5 =\frac{\ldots\ldots\ldots}{\ldots\ldots\ldots}$ \vskip 0.4cm \item $5,89 =\frac{\ldots\ldots\ldots}{\ldots\ldots\ldots}$ \vskip 0.4cm \end{questions} \end{multicols} \vskip 0.5cm \exo Les deux rectangles suivants ont les mêmes dimensions. \begin{multicols}{2} \psset{unit=0.5cm} \pspicture(-3,0)(6,4) \psframe(0,0)(6,4) \multido{\i=1+1}{3} { \psline(0,\i)(6,\i)} \multido{\i=1+1}{5} { \psline(\i,0)(\i,4)} \endpspicture \begin{itemize} \item Colorie la moitié haute du tableau. \item Combien de carreaux as-tu coloriés ? \dotfill \item Combien y a-t-il de carreaux en tout ? \dotfill \vskip 0.4cm \item $\dfrac{\textrm{Carreaux coloriés}}{\textrm{Carreaux}}=\dfrac{\dots\ldots\ldots}{\ldots\ldots\dots}$ \end{itemize} \columnbreak \pspicture(-3,0)(6,4) \psframe(0,0)(6,4) \multido{\i=1+1}{3} { \psline(0,\i)(6,\i)} \multido{\i=2+2}{2} { \psline(\i,0)(\i,4)} \endpspicture \begin{itemize} \item Colorie la moitié haute du tableau. \item Combien de carreaux as-tu coloriés ? \dotfill \item Combien y a-t-il de carreaux en tout ? \dotfill \vskip 0.4cm \item $\dfrac{\textrm{Carreaux coloriés}}{\textrm{Carreaux}}=\dfrac{\dots\ldots\ldots}{\ldots\ldots\dots}$ \end{itemize} \end{multicols} Dans chaque tableau, tu as colorié la moitié des carreaux. Donc, on peut affirmer que $$\dfrac{1}{2}=\dfrac{\dots\ldots\ldots}{\dots\ldots\ldots}=\dfrac{\dots\ldots\ldots}{\dots\ldots\ldots}$$ \vskip 0.5cm \exo Dans chaque cas, colorier la quantité indiquée \psset{xunit=1 cm} \newpsstyle{blanc}{fillstyle=solid, fillcolor=white} \pspicture(0,0.5)(2,3.6) \multirput(0,0.25){6} {\psellipse[style=blanc](1,0.8)(1,0.2) \psframe[style=blanc, linecolor=white](0,0.8)(2,1) \psline(0,0.8)(0,1)(2,1)(2,0.8) \psellipse[style=blanc](1,1)(1,0.2)} \endpspicture \hfill \pspicture(0,0.5)(2,3.6) \multirput(0,0.25){10} {\psellipse[style=blanc](1,0.8)(1,0.2) \psframe[style=blanc, linecolor=white](0,0.8)(2,1) \psline(0,0.8)(0,1)(2,1)(2,0.8) \psellipse[style=blanc](1,1)(1,0.2)} \endpspicture \hfill \pspicture(0,0.5)(2,3.6) \multirput(0,0.25){9} {\psellipse[style=blanc](1,0.8)(1,0.2) \psframe[style=blanc, linecolor=white](0,0.8)(2,1) \psline(0,0.8)(0,1)(2,1)(2,0.8) \psellipse[style=blanc](1,1)(1,0.2)} \endpspicture \hfill \pspicture(0,0.5)(2,3.6) \multirput(0,0.25){4} {\psellipse[style=blanc](1,0.8)(1,0.2) \psframe[style=blanc, linecolor=white](0,0.8)(2,1) \psline(0,0.8)(0,1)(2,1)(2,0.8) \psellipse[style=blanc](1,1)(1,0.2)} \endpspicture \hfill \pspicture(0,0.5)(2,3.6) \multirput(0,0.25){8} {\psellipse[style=blanc](1,0.8)(1,0.2) \psframe[style=blanc, linecolor=white](0,0.8)(2,1) \psline(0,0.8)(0,1)(2,1)(2,0.8) \psellipse[style=blanc](1,1)(1,0.2)} \endpspicture \hfill \\ Quantité : $\dfrac{5}{6}$ \hfill Quantité : $\dfrac{3}{10}$ \hfill Quantité : $\dfrac{2}{3}$ \hfill Quantité : $\dfrac{1}{2}$ \hfill Quantité : $\dfrac{3}{4}$ \\ \vskip 0.5cm \exo Dans chaque cas, indiquer sous forme fractionnaire, la quantité coloriée \psset{xunit=1 cm} \newpsstyle{blanc}{fillstyle=solid, fillcolor=white} \newpsstyle{gris}{fillstyle=solid, fillcolor=gray} \pspicture(0,0.3)(2,3.6) \multirput(0,0.25){4} {\psellipse[style=gris](1,0.8)(1,0.2) \psframe[style=gris, linecolor=gray](0,0.8)(2,1) \psline(0,0.8)(0,1)(2,1)(2,0.8) \psellipse[style=gris](1,1)(1,0.2)} \multirput(0,0.25){5} {\psellipse[style=blanc](1,1.8)(1,0.2) \psframe[style=blanc, linecolor=white](0,1.8)(2,2) \psline(0,1.8)(0,2)(2,2)(2,1.8) \psellipse[style=blanc](1,2)(1,0.2)} \endpspicture \hfill \pspicture(0,0.3)(2,3.6) \multirput(0,0.25){4} {\psellipse[style=gris](1,0.8)(1,0.2) \psframe[style=gris, linecolor=gray](0,0.8)(2,1) \psline(0,0.8)(0,1)(2,1)(2,0.8) \psellipse[style=gris](1,1)(1,0.2)} \multirput(0,0.25){6} {\psellipse[style=blanc](1,1.8)(1,0.2) \psframe[style=blanc, linecolor=white](0,1.8)(2,2) \psline(0,1.8)(0,2)(2,2)(2,1.8) \psellipse[style=blanc](1,2)(1,0.2)} \endpspicture \hfill \pspicture(0,0.3)(2,3.6) \multirput(0,0.25){6} {\psellipse[style=gris](1,0.8)(1,0.2) \psframe[style=gris, linecolor=gray](0,0.8)(2,1) \psline(0,0.8)(0,1)(2,1)(2,0.8) \psellipse[style=gris](1,1)(1,0.2)} \multirput(0,0.25){4} {\psellipse[style=blanc](1,2.3)(1,0.2) \psframe[style=blanc, linecolor=white](0,2.3)(2,2.7) \psline(0,2.3)(0,2.5)(2,2.5)(2,2.3) \psellipse[style=blanc](1,2.5)(1,0.2)} \endpspicture \hfill \pspicture(0,0.3)(2,3.6) \multirput(0,0.25){2} {\psellipse[style=gris](1,0.8)(1,0.2) \psframe[style=gris, linecolor=gray](0,0.8)(2,1) \psline(0,0.8)(0,1)(2,1)(2,0.8) \psellipse[style=gris](1,1)(1,0.2)} \multirput(0,0.25){5} {\psellipse[style=blanc](1,1.3)(1,0.2) \psframe[style=blanc, linecolor=white](0,1.3)(2,1.7) \psline(0,1.3)(0,1.5)(2,1.5)(2,1.3) \psellipse[style=blanc](1,1.5)(1,0.2)} \endpspicture \hfill \pspicture(0,0.3)(2,3.6) \multirput(0,0.25){6} {\psellipse[style=gris](1,0.8)(1,0.2) \psframe[style=gris, linecolor=gray](0,0.8)(2,1) \psline(0,0.8)(0,1)(2,1)(2,0.8) \psellipse[style=gris](1,1)(1,0.2)} \multirput(0,0.25){6} {\psellipse[style=blanc](1,2.3)(1,0.2) \psframe[style=blanc, linecolor=white](0,2.3)(2,2.7) \psline(0,2.3)(0,2.5)(2,2.5)(2,2.3) \psellipse[style=blanc](1,2.5)(1,0.2)} \endpspicture \\ Quantité : $\dfrac{\dots}{\dots}$ \hfill Quantité : $\dfrac{\dots}{\dots}$ \hfill Quantité : $\dfrac{\dots}{\dots}$ \hfill Quantité : $\dfrac{\dots}{\dots}$ \hfill Quantité : $\dfrac{\dots}{\dots}$ \\ \newpage \vskip 0.5cm \exo \begin{questions} \item Pour chaque grille quelle est la fraction : $\dfrac{nombre\ de\ cases\ noires}{nombre\ de\ cases\ au\ total}$ ? \item Ranger ces fractions $f_1$, $f_2$ et $f_3$ par ordre croissant. Quelle est la figure la plus sombre ? \end{questions} \medskip \psset{unit=0.5cm}% \pspicture*(0,-2)(6,6) %\psgrid \newpsstyle{S}{fillstyle=solid,fillcolor=black} \psgrid[gridcolor=black,gridwidth=0.1pt,subgriddiv=0,gridlabels=0](0,0)(6,6) \psframe[style=S](5,4)(6,5) \psframe[style=S](0,0)(1,1) \psframe[style=S](0,2)(1,3) \psframe[style=S](0,3)(1,4) \psframe[style=S](1,2)(2,3) \psframe[style=S](1,4)(2,5) \psframe[style=S](1,5)(2,6) \psframe[style=S](2,0)(3,1) \psframe[style=S](2,1)(3,2) \psframe[style=S](4,1)(5,2) \psframe[style=S](5,1)(6,2) \psframe[style=S](2,3)(3,4) \psframe[style=S](3,4)(4,5) \psframe[style=S](4,3)(5,4) \psframe[style=S](4,5)(5,6) \psframe[style=S](5,3)(6,4) \put(1,-1.5){$f_1=\dfrac{\ldots\ldots\ldots}{\ldots\ldots\ldots}$} \endpspicture \hfill \pspicture*(0,-2)(9,5) \newpsstyle{S}{fillstyle=solid,fillcolor=black} \psgrid[gridcolor=black,gridwidth=0.1pt,subgriddiv=0,gridlabels=0](0,0)(9,5) \psframe[style=S](0,0)(1,5) \psframe[style=S](2,0)(3,5) \psframe[style=S](4,0)(5,5) \psframe[style=S](6,0)(7,5) \psframe[style=S](8,0)(9,5) \psframe[style=S](0,2)(9,3) \put(2,-1.5){$f_2=\dfrac{\ldots\ldots\ldots}{\ldots\ldots\ldots}$} \endpspicture \hfill \psset{unit=0.17cm}% \begin{pspicture*}(3.05,-4)(21.9,18) %\psgrid \psset{dotstyle=x, dotscale=2.0, linewidth=0.02} \psline[linecolor=black](7.795534,17.590638)(17.195534,17.557305) \psline[linecolor=black](17.195534,17.557305)(21.866667,9.400000) \psline[linecolor=black](21.866667,9.400000)(17.137800,1.276028) \psline[linecolor=black](17.137800,1.276028)(7.737800,1.309361) \psline[linecolor=black](7.737800,1.309361)(3.066667,9.466666) \psline[linecolor=black](3.066667,9.466666)(7.795534,17.590638) \psline[linecolor=black](7.795534,17.590638)(17.137800,1.276028) \psline[linecolor=black](3.066667,9.466666)(21.866667,9.400000) \psline[linecolor=black](17.195534,17.557305)(7.737800,1.309361) \psline[linecolor=black](12.495534,17.573972)(5.402233,5.388013) \psline[linecolor=black](19.531101,13.478653)(12.437800,1.292694) \psline[linecolor=black](19.502233,5.338014)(12.495534,17.573972) \psline[linecolor=black](5.431101,13.528652)(12.437800,1.292694) \psline[linecolor=black](5.402233,5.388013)(19.502233,5.338014) \psline[linecolor=black](5.431101,13.528652)(19.531101,13.478653) \pspolygon[fillstyle=solid, fillcolor=black] (7.795534,17.590638) (10.131101,13.511986) (12.495534,17.573972) \pspolygon[fillstyle=solid, fillcolor=black] (12.495534,17.573972) (14.831101,13.495319) (17.195534,17.557305) \pspolygon[fillstyle=solid, fillcolor=black] (5.431101,13.528652) (10.131101,13.511986) (7.766667,9.450000) \pspolygon[fillstyle=solid, fillcolor=black] (10.131101,13.511986) (12.466667,9.433333) (14.831101,13.495319) \pspolygon[fillstyle=solid, fillcolor=black] (14.831101,13.495319) (19.531101,13.478653) (17.166667,9.416667) \pspolygon[fillstyle=solid, fillcolor=black] (3.066667,9.466666) (7.766667,9.450000) (5.402233,5.388013) \pspolygon[fillstyle=solid, fillcolor=black] (7.766667,9.450000) (10.102233,5.371347) (12.466667,9.433333) \pspolygon[fillstyle=solid, fillcolor=black] (12.466667,9.433333) (17.166667,9.416667) (14.802233,5.354680) \pspolygon[fillstyle=solid, fillcolor=black] (21.866667,9.400000) (19.502233,5.338014) (17.166667,9.416667) \pspolygon[fillstyle=solid, fillcolor=black] (17.137800,1.276028) (19.502233,5.338014) (14.802233,5.354680) \pspolygon[fillstyle=solid, fillcolor=black] (10.102233,5.371347) (14.802233,5.354680) (12.437800,1.292694) \pspolygon[fillstyle=solid, fillcolor=black] (7.737800,1.309361) (10.102233,5.371347) (5.402233,5.388013) \put(6,-2){$f_3=\dfrac{\ldots\ldots\ldots}{\ldots\ldots\ldots}$} \end{pspicture*} \hfill \\ \vskip 0.5cm \exo Colorie: \begin{enumerate}[$\diamond$] \item $\dfrac{3}{4}$ du losange % Généré par 0.9.2 \psset{linecolor=black, linewidth=.5pt, arrowsize=2pt 4} \psset{unit=0.7000cm} \pspicture(-4.5000,-2.0000)(8.5000,-1.5000) \rput(3,-6){\pscircle(-2.0000,3.0000){1.5000} \rput(-2,3){ \SpecialCoor \multido{\i=20+40}{9}{\psline(1.5;\i)}} \NormalCoor \pspolygon(1.3505,4.3750)(2.0000,3.2500)(2.6495,4.3750) \pspolygon(1.6752,3.8125)(2.3248,3.8125)(2.0000,4.3750) \pspolygon(2.0000,5.5000)(0.7010,3.2500)(3.2990,3.2500) \pspolygon(0.0000,2.0000)(0.0000,-1.0000)(3.0000,-1.0000)(3.0000,2.0000) \psline(1.0000,2.0000)(1.0000,-1.0000) \psline(2.0000,2.0000)(2.0000,-1.0000) \psline(0.0000,1.0000)(3.0000,1.0000) \psline(0.0000,0.0000)(3.0000,0.0000) \pspolygon(6.0000,4.0000)(4.0000,3.0000)(6.0000,2.0000)(8.0000,3.0000) \psline(6.0000,4.0000)(6.0000,2.0000) \psline(4.0000,3.0000)(8.0000,3.0000)} \endpspicture \item $\dfrac{2}{3}$ du disque, \item $\dfrac{5}{9}$ du carré \item $\dfrac{3}{8}$ du triangle équilatéral \end{enumerate} \vskip 1cm \exo On a représenté trois baguettes de pain prédécoupées. Dans chaque cas, indiquer par une fraction la quantité grisée. \psset{unit=0.4cm}% \begin{enumerate}[a)$\diamond$] % -------------- 9/6 \item \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(12,1)(12,0) \multido{\i=2+2}{4}{\pspolygon[fillstyle=solid,fillcolor=gray](\i,1)(\i,0)(10,0)(10,1)} \endpspicture \quad \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(12,1)(12,0) \multido{\i=2+2}{2}{\pspolygon[fillstyle=solid,fillcolor=gray](\i,1)(\i,0)(10,0)(10,1)} \multido{\i=6+2}{2}{\pspolygon[fillstyle=solid,fillcolor=white](\i,1)(\i,0)(10,0)(10,1)} \endpspicture \quad \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(12,1)(12,0) \multido{\i=2+2}{4}{\pspolygon[fillstyle=solid,fillcolor=white](\i,1)(\i,0)(10,0)(10,1)} \endpspicture % ------------------------------ 5/3 \item \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(12,1)(12,0) \pspolygon[fillstyle=solid,fillcolor=gray](4,1)(4,0)(8,0)(8,1) \endpspicture \quad \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(12,1)(12,0) \pspolygon[fillstyle=solid,fillcolor=gray](4,1)(4,0)(8,0)(8,1) \endpspicture \quad \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(12,1)(12,0) \pspolygon[fillstyle=solid,fillcolor=white](4,1)(4,0)(8,0)(8,1) \endpspicture % ------------------------------ 10/4 \item \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(12,1)(12,0) \multido{\i=3+3}{3}{\pspolygon[fillstyle=solid,fillcolor=gray](\i,1)(\i,0)(9,0)(9,1)} \endpspicture \quad \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(12,1)(12,0) \multido{\i=3+3}{3}{\pspolygon[fillstyle=solid,fillcolor=gray](\i,1)(\i,0)(9,0)(9,1)} \endpspicture \quad \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(12,1)(12,0) \multido{\i=3+3}{1}{\pspolygon[fillstyle=solid,fillcolor=gray](\i,1)(\i,0)(9,0)(9,1)} \multido{\i=6+3}{2}{\pspolygon[fillstyle=solid,fillcolor=white](\i,1)(\i,0)(9,0)(9,1)} \endpspicture % ------------------------------------ 3/6 \item \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(12,1)(12,0) \multido{\i=2+2}{2}{\pspolygon[fillstyle=solid,fillcolor=gray](\i,1)(\i,0)(10,0)(10,1)} \multido{\i=6+2}{2}{\pspolygon[fillstyle=solid,fillcolor=white](\i,1)(\i,0)(10,0)(10,1)} \endpspicture \quad \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(12,1)(12,0) \multido{\i=2+2}{4}{\pspolygon[fillstyle=solid,fillcolor=white](\i,1)(\i,0)(10,0)(10,1)} \endpspicture \quad \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(12,1)(12,0) \multido{\i=2+2}{4}{\pspolygon[fillstyle=solid,fillcolor=white](\i,1)(\i,0)(10,0)(10,1)} \endpspicture % ------------------------------4/3 \item \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(12,1)(12,0) \pspolygon[fillstyle=solid,fillcolor=gray](4,1)(4,0)(8,0)(8,1) \endpspicture \quad \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(12,1)(12,0) \pspolygon[fillstyle=solid,fillcolor=white](4,1)(4,0)(8,0)(8,1) \endpspicture \quad \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(12,1)(12,0) \pspolygon[fillstyle=solid,fillcolor=white](4,1)(4,0)(8,0)(8,1) \endpspicture % ------------------------------ 9/4 \item \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(12,1)(12,0) \multido{\i=3+3}{3}{\pspolygon[fillstyle=solid,fillcolor=gray](\i,1)(\i,0)(9,0)(9,1)} \endpspicture \quad \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(12,1)(12,0) \multido{\i=3+3}{3}{\pspolygon[fillstyle=solid,fillcolor=gray](\i,1)(\i,0)(9,0)(9,1)} \endpspicture \quad \pspicture*(0,0)(12,1) \pspolygon[fillstyle=solid,fillcolor=gray,linearc=.5](6,0)(6,1)(0,1)(0,0) \pspolygon[fillstyle=solid,fillcolor=white,linearc=.5](6,0)(6,1)(12,1)(12,0) \multido{\i=3+3}{2}{\pspolygon[fillstyle=solid,fillcolor=white](\i,1)(\i,0)(9,0)(9,1)} \endpspicture \vskip 0.7cm \centerline{\textbf{Réponses : } \hfill a)= \dotfill~~ b)= \dotfill~~ c)= \dotfill~~ d)= \dotfill~~ e)=\dotfill~~ f)=\dotfill} \end{enumerate} \vskip 0.4cm \exo \begin{questions} \item Relier entre elles les figures dont les parties grisées correspondent. \item En déduire six égalités de fractions. \end{questions} \smallskip \multido{}{5}{Fraction: \dots \hfill } Fraction: \dots \\ \psset{unit=0.8cm}% % -------------- 4/8 \pspicture*(-1,-1)(1,1) \SpecialCoor \pscircle{1} \pswedge[fillstyle=solid,fillcolor=gray]{1}{0}{180} \multido{\i=0+45}{8}{\psline(1;\i)} \NormalCoor \endpspicture \hfill % -------------- 2/6 \pspicture*(-1,-1)(1,1) \SpecialCoor \pscircle{1} \pswedge[fillstyle=solid,fillcolor=gray]{1}{60}{180}\multido{\i=0+60}{6}{\psline(1;\i)} \NormalCoor \endpspicture \hfill % -------------- 8/10 \pspicture*(-1,-1)(1,1) \SpecialCoor \pscircle{1} \pswedge[fillstyle=solid,fillcolor=gray]{1}{36}{324} \multido{\i=0+36}{10}{\psline(1;\i)} \NormalCoor \endpspicture \hfill % -------------- 2/20 \pspicture*(-1,-1)(1,1) \SpecialCoor \pscircle{1} \pswedge[fillstyle=solid,fillcolor=gray]{1}{144}{180} \multido{\i=0+18}{20}{\psline(1;\i)} \NormalCoor \endpspicture \hfill % -------------- 2/3 \pspicture*(-1,-1)(1,1) \SpecialCoor \pscircle{1} \pswedge[fillstyle=solid,fillcolor=gray]{1}{0}{240} \multido{\i=0+120}{3}{\psline(1;\i)} \NormalCoor \endpspicture \hfill % -------------- 5/6 \pspicture*(-1,-1)(1,1) \SpecialCoor \pscircle{1} \pswedge[fillstyle=solid,fillcolor=gray]{1}{60}{360}\multido{\i=0+60}{6}{\psline(1;\i)} \NormalCoor \endpspicture \\ \bigskip \medskip % -------------- 1/3 \pspicture*(-1,-1)(1,1) \SpecialCoor \pscircle{1} \pswedge[fillstyle=solid,fillcolor=gray]{1}{240}{360}\multido{\i=0+120}{3}{\psline(1;\i)} \NormalCoor \endpspicture \hfill % -------------- 2/4 \pspicture*(-1,-1)(1,1) \SpecialCoor \pscircle{1} \pswedge[fillstyle=solid,fillcolor=gray]{1}{180}{360}\multido{\i=0+90}{4}{\psline(1;\i)} \NormalCoor \endpspicture \hfill % -------------- 4/5 \pspicture*(-1,-1)(1,1) \SpecialCoor \pscircle{1} \pswedge[fillstyle=solid,fillcolor=gray]{1}{72}{360} \multido{\i=0+72}{5}{\psline(1;\i)} \NormalCoor \endpspicture \hfill % -------------- 6/9 \pspicture*(-1,-1)(1,1) \SpecialCoor \pscircle{1} \pswedge[fillstyle=solid,fillcolor=gray]{1}{120}{360}\multido{\i=0+40}{9}{\psline(1;\i)} \NormalCoor \endpspicture \hfill % -------------- 10/12 \pspicture*(-1,-1)(1,1) \SpecialCoor \pscircle{1} \pswedge[fillstyle=solid,fillcolor=gray]{1}{210}{150} \multido{\i=0+30}{12}{\psline(1;\i)} \NormalCoor \endpspicture \hfill % -------------- 1/10 \pspicture*(-1,-1)(1,1) \SpecialCoor \pscircle{1} \pswedge[fillstyle=solid,fillcolor=gray]{1}{180}{216}\multido{\i=0+36}{10}{\psline(1;\i)} \NormalCoor \endpspicture \\ \multido{}{5}{Fraction: \dots \hfill } Fraction: \dots \\ \vskip 0.1cm Les 6 égalités de fractions sont : \dotfill \vskip 0.5cm \exo Voici 12 fractions. Quelles sont celles qui sont égales à $\dfrac{1}{2}$, à $\dfrac{3}{4}$, à $\dfrac{2}{3}$ ? \smallskip \psframebox{$\dfrac{6}{8}$} \hfill \psframebox{$\dfrac{50}{100}$} \hfill \psframebox{$\dfrac{9}{12}$} \hfill \psframebox{$\dfrac{18}{27}$} \hfill \psframebox{$\dfrac{21}{28}$} \hfill \psframebox{$\dfrac{10}{20}$} \hfill \psframebox{$\dfrac{200}{300}$} \hfill \psframebox{$\dfrac{22}{33}$} \hfill \psframebox{$\dfrac{7}{14}$} \hfill \psframebox{$\dfrac{4}{6}$} \hfill \psframebox{$\dfrac{42}{84}$} \hfill \psframebox{$\dfrac{297}{396}$} \hfill \\ \bigskip \centerline{$\dfrac{1}{2}=$ \hfill $\dfrac{3}{4}=$ \hfill $\dfrac{2}{3}=$ \hfill} \vskip 0.5cm \exo Compléter les égalités suivantes. \begin{questions} \item $\dfrac{20}{18}=\dfrac{2\*\dots}{2\*\dots}=\dfrac{\dots}{\dots}$ \hfill $\dfrac{30}{48}=\dfrac{6\*\dots}{6\*\dots}=\dfrac{\dots}{\dots}$ \hfill $\dfrac{36}{32}=\dfrac{4\*\dots}{4\*\dots}=\dfrac{\dots}{\dots}$ \hfill $\dfrac{3}{21}=\dfrac{3\*\dots}{3\*\dots}=\dfrac{\dots}{\dots}$ \\ \item $\dfrac{98}{35}=\dfrac{7\*\dots}{7\*\dots}=\dfrac{\dots}{\dots}$ \hfill $\dfrac{99}{44}=\dfrac{11\*\dots}{11\*\dots}=\dfrac{\dots}{\dots}$ \hfill $\dfrac{17}{34}=\dfrac{17\*\dots}{17\*\dots}=\dfrac{\dots}{\dots}$ \hfill $\dfrac{76}{95}=\dfrac{19\*\dots}{19\*\dots}=\dfrac{\dots}{\dots}$ \\ \end{questions} \vskip 0.5cm \exo Compléter les égalités suivantes en expliquant les calculs : \smallskip \begin{questions} \item $\dfrac{1}{6}=\dfrac{\dots\dots}{12}$ ; explication : \dotfill \item $\dfrac{20}{60}=\dfrac{4}{\dots\dots}$ ; explication : \dotfill \item $\dfrac{21}{56}=\dfrac{3}{\dots\dots}$ ; explication : \dotfill \item $\dfrac{6}{24}=\dfrac{\dots\dots}{8}$ ; explication : \dotfill \item $\dfrac{44}{66}=\dfrac{2}{\dots\dots}$ ; explication : \dotfill \item $\dfrac{1}{6}=\dfrac{6}{\dots\dots}$ ; explication : \dotfill \end{questions} \vskip 0.5cm \exo Mettre une croix dans la (ou les) bonne(s) case(s). On rappelle d'une fraction est \textit{irréductible} si on ne peut pas la simplifier par un nombre entier. \begin{center} \begin{tabular}{|l|c|c|c|c|c|c|c|c|} \hline & $\dfrac{\strut 3}{\strut 6}$ & $\dfrac{15}{10}$ & $\dfrac{11}{2}$ & $\dfrac{4}{12}$ & $\dfrac{24}{36}$ & $\dfrac{3}{21}$ & $\dfrac{15}{24}$ & $\dfrac{20}{25}$ \\ \hline Fraction simplifiable par 2 & & & & & & & & \\ \hline Fraction simplifiable par 3 & & & & & & & & \\\hline Fraction simplifiable par 4 & & & & & & & & \\ \hline Fraction simplifiable par 5 & & & & & & & & \\ \hline Fraction irréductible & & & & & & & & \\ \hline \end{tabular} \end{center} \vskip 0.5cm % exemple : \exo Calculer puis simplifier lorsque c'est possible \begin{enumerate}[a)] \item $\dfrac{2}{3}\*\dfrac{3}{4} =$ \dotfill \item $\dfrac{7}{2}\*\dfrac{5}{2} =$ \dotfill \item $\dfrac{2}{3}\*\dfrac{9}{2} =$ \dotfill \end{enumerate} \vskip 0.5cm \exo Mettre les fractions au même dénominateur, puis classer dans l'ordre croissssant \begin{enumerate}[a)] \item $\dfrac{4}{5}$ \qquad $\dfrac{7}{15}$ \qquad $\dfrac{4}{3}$ \qquad $\dfrac{1}{5}$ \qquad $\dfrac{2}{3}$ \qquad $\dfrac{3}{15}$\\ \vskip 0.3cm Ordre croissant : \dotfill \item $\dfrac{13}{30}$ \qquad $\dfrac{3}{5}$ \qquad $\dfrac{6}{20}$ \qquad $\dfrac{3}{4}$ \qquad $\dfrac{2}{3}$ \qquad $\dfrac{5}{15}$\\ \vskip 0.3cm Ordre croissant : \dotfill \item $\dfrac{3}{12}$ \qquad $\dfrac{2}{24}$ \qquad $\dfrac{5}{6}$ \qquad $\dfrac{9}{48}$ \qquad $\dfrac{7}{3}$ \qquad $\dfrac{5}{4}$\\ \vskip 0.3cm Ordre croissant : \dotfill \end{enumerate} \end{document}